• Title/Summary/Keyword: keyword-based search

Search Result 317, Processing Time 0.027 seconds

A Study on the Network Text Analysis about Oral Health in Aging-Well

  • Seol-Hee Kim
    • Journal of dental hygiene science
    • /
    • v.23 no.4
    • /
    • pp.302-311
    • /
    • 2023
  • Background: Oral health is an important element of well aging. And oral health also affects overall health, mental health, and quality of life. In this study, we sought to identify oral health influencing factors and research trends for well-aging through text analysis of research on well-aging and oral health over the past 12 years. Methods: The research data was analyzed based on English literature published in PubMed from 2012 to 2023. Aging well and oral health were used as search terms, and 115 final papers were selected. Network text analysis included keyword frequency analysis, centrality analysis, and cohesion structure analysis using the Net-Miner 4.0 program. Results: Excluding general characteristics, the most frequent keywords in 115 articles, 520 keywords (Mesh terms) were psychology, dental prosthesis and Alzheimer's disease, Dental caries, cognition, cognitive dysfunction, and bacteria. Research keywords with high degree centrality were Dental caries (0.864), Quality of life (0.833), Tooth loss (0.818), Health status (0.727), and Life expectancy (0.712). As a result of community analysis, it consisted of 4 groups. Group 1 consisted of chewing and nutrition, Group 2 consisted oral diseases, systemic diseases and management, Group 3 consisted oral health and mental health, Group 4 consisted oral frailty symptoms and quality of life. Conclusion: In an aging society, oral dysfunction affects mental health and quality of life. Preventing oral diseases for well-aging can have a positive impact on mental health and quality of life. Therefore, efforts are needed to prevent oral frailty in a super-aging society by developing and educating systematic oral care programs for each life cycle.

Evaluation of communication effectiveness of cruelty-free fashion brands - A comparative study of brand-led and consumer-perceived images - (크루얼티 프리 패션 브랜드의 커뮤니케이션 성과 분석 - 브랜드 주도적 이미지와 소비자 지각 이미지에 대한 비교 -)

  • Yeong-Hyeon Choi;Sangyung Lee
    • The Research Journal of the Costume Culture
    • /
    • v.32 no.2
    • /
    • pp.247-259
    • /
    • 2024
  • This study assessed the effectiveness of brand image communication on consumer perceptions of cruelty-free fashion brands. Brand messaging data were gathered from postings on the official Instagram accounts of three cruelty-free fashion brands and consumer perception data were gathered from Tweets containing keywords related to each brand. Web crawling and natural language processing were performed using Python and sentiment analysis was conducted using the BERT model. By analyzing Instagram content from Stella McCartney, Patagonia, and Freitag from their inception until 2021, this study found these brands all emphasize environmental aspects but with differing focuses: Stella McCartney on ecological conservation, Patagonia on an active outdoor image, and Freitag on upcycled products. Keyword analysis further indicated consumers perceive these brands in line with their brand messaging: Stella McCartney as high-end and eco-friendly, Patagonia as active and environmentally conscious, and Freitag as centered on recycling. Results based on the assessment of the alignment between brand-driven images and consumer-perceived images and the sentiment evaluation of the brand confirmed the outcomes of brand communication performance. The study revealed a correlation between brand image and positive consumer evaluations, indicating that higher alignment of ethical values leads to more positive consumer assessments. Given that consumers tend to prioritize search keywords over brand concepts, it's important for brands to focus on using visual imagery and promotions to effectively convey brand communication information. These findings highlight the importance of brand communication by emphasizing the connection between ethical brand images and consumer perceptions.

An Analysis of the Dynamics between Media Coverage and Stock Market on Digital New Deal Policy: Focusing on Companies Related to the Fourth Industrial Revolution (디지털 뉴딜 정책에 대한 언론 보도량과 주식 시장의 동태적 관계 분석: 4차산업혁명 관련 기업을 중심으로)

  • Sohn, Kwonsang;Kwon, Ohbyung
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.33-53
    • /
    • 2021
  • In the crossroads of social change caused by the spread of the Fourth Industrial Revolution and the prolonged COVID-19, the Korean government announced the Digital New Deal policy on July 14, 2020. The Digital New Deal policy's primary goal is to create new businesses by accelerating digital transformation in the public sector and industries around data, networks, and artificial intelligence technologies. However, in a rapidly changing social environment, information asymmetry of the future benefits of technology can cause differences in the public's ability to analyze the direction and effectiveness of policies, resulting in uncertainty about the practical effects of policies. On the other hand, the media leads the formation of discourse through communicators' role to disseminate government policies to the public and provides knowledge about specific issues through the news. In other words, as the media coverage of a particular policy increases, the issue concentration increases, which also affects public decision-making. Therefore, the purpose of this study is to verify the dynamic relationship between the media coverage and the stock market on the Korean government's digital New Deal policy using Granger causality, impulse response functions, and variance decomposition analysis. To this end, the daily stock turnover ratio, daily price-earnings ratio, and EWMA volatility of digital technology-based companies related to the digital new deal policy among KOSDAQ listed companies were set as variables. As a result, keyword search volume, daily stock turnover ratio, EWMA volatility have a bi-directional Granger causal relationship with media coverage. And an increase in media coverage has a high impact on keyword search volume on digital new deal policies. Also, the impulse response analysis on media coverage showed a sharp drop in EWMA volatility. The influence gradually increased over time and played a role in mitigating stock market volatility. Based on this study's findings, the amount of media coverage of digital new deals policy has a significant dynamic relationship with the stock market.

Intelligent Web Crawler for Supporting Big Data Analysis Services (빅데이터 분석 서비스 지원을 위한 지능형 웹 크롤러)

  • Seo, Dongmin;Jung, Hanmin
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.12
    • /
    • pp.575-584
    • /
    • 2013
  • Data types used for big-data analysis are very widely, such as news, blog, SNS, papers, patents, sensed data, and etc. Particularly, the utilization of web documents offering reliable data in real time is increasing gradually. And web crawlers that collect web documents automatically have grown in importance because big-data is being used in many different fields and web data are growing exponentially every year. However, existing web crawlers can't collect whole web documents in a web site because existing web crawlers collect web documents with only URLs included in web documents collected in some web sites. Also, existing web crawlers can collect web documents collected by other web crawlers already because information about web documents collected in each web crawler isn't efficiently managed between web crawlers. Therefore, this paper proposed a distributed web crawler. To resolve the problems of existing web crawler, the proposed web crawler collects web documents by RSS of each web site and Google search API. And the web crawler provides fast crawling performance by a client-server model based on RMI and NIO that minimize network traffic. Furthermore, the web crawler extracts core content from a web document by a keyword similarity comparison on tags included in a web documents. Finally, to verify the superiority of our web crawler, we compare our web crawler with existing web crawlers in various experiments.

A Study on Scale of Participation Motive for Leisure Sports (여가 스포츠 참여동기 척도 분석에 관한 연구)

  • Kim, Ji-Young;Kim, Seung-Hyeon
    • 한국체육학회지인문사회과학편
    • /
    • v.54 no.3
    • /
    • pp.439-452
    • /
    • 2015
  • The purpose of this study is to encourage continuous participation in sports and to provide basic data for the promotion of participation in leisure sports. To achieve the purpose, this study conducted factor scaling analysis on participation motives for leisure sports and subdivided them to analyze psychological reactions of participants. As for study methods, this study collected master and doctor's degree theses and academic journals on motives for sports participation that were conducted from 1997 to 2012 from Korean major search engines. On the search engines, a keyword 'motive' was searched first and then studies on participation motive for leisure sports were collected. Key words that appeared when searching 'motive' were combined with other key words and word spacing between them were checked before conducting a literature analysis. The study results showed that participation motives for leisure sports were divided into a participation motive, an internal motive, an external motive, a leisure motive and other motives. It was identified that there were 23 factors for the participation motive, 17 factors each for the internal motive and the external motive, 8 factors for the leisure motive and 57 factors for other motives. It was found out that 76 factors were used to study a participation motive for leisure sports, excluding the factors that have similar or overlapping meaning based on each factor.

A Study on Ontology and Topic Modeling-based Multi-dimensional Knowledge Map Services (온톨로지와 토픽모델링 기반 다차원 연계 지식맵 서비스 연구)

  • Jeong, Hanjo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.79-92
    • /
    • 2015
  • Knowledge map is widely used to represent knowledge in many domains. This paper presents a method of integrating the national R&D data and assists of users to navigate the integrated data via using a knowledge map service. The knowledge map service is built by using a lightweight ontology and a topic modeling method. The national R&D data is integrated with the research project as its center, i.e., the other R&D data such as research papers, patents, and reports are connected with the research project as its outputs. The lightweight ontology is used to represent the simple relationships between the integrated data such as project-outputs relationships, document-author relationships, and document-topic relationships. Knowledge map enables us to infer further relationships such as co-author and co-topic relationships. To extract the relationships between the integrated data, a Relational Data-to-Triples transformer is implemented. Also, a topic modeling approach is introduced to extract the document-topic relationships. A triple store is used to manage and process the ontology data while preserving the network characteristics of knowledge map service. Knowledge map can be divided into two types: one is a knowledge map used in the area of knowledge management to store, manage and process the organizations' data as knowledge, the other is a knowledge map for analyzing and representing knowledge extracted from the science & technology documents. This research focuses on the latter one. In this research, a knowledge map service is introduced for integrating the national R&D data obtained from National Digital Science Library (NDSL) and National Science & Technology Information Service (NTIS), which are two major repository and service of national R&D data servicing in Korea. A lightweight ontology is used to design and build a knowledge map. Using the lightweight ontology enables us to represent and process knowledge as a simple network and it fits in with the knowledge navigation and visualization characteristics of the knowledge map. The lightweight ontology is used to represent the entities and their relationships in the knowledge maps, and an ontology repository is created to store and process the ontology. In the ontologies, researchers are implicitly connected by the national R&D data as the author relationships and the performer relationships. A knowledge map for displaying researchers' network is created, and the researchers' network is created by the co-authoring relationships of the national R&D documents and the co-participation relationships of the national R&D projects. To sum up, a knowledge map-service system based on topic modeling and ontology is introduced for processing knowledge about the national R&D data such as research projects, papers, patent, project reports, and Global Trends Briefing (GTB) data. The system has goals 1) to integrate the national R&D data obtained from NDSL and NTIS, 2) to provide a semantic & topic based information search on the integrated data, and 3) to provide a knowledge map services based on the semantic analysis and knowledge processing. The S&T information such as research papers, research reports, patents and GTB are daily updated from NDSL, and the R&D projects information including their participants and output information are updated from the NTIS. The S&T information and the national R&D information are obtained and integrated to the integrated database. Knowledge base is constructed by transforming the relational data into triples referencing R&D ontology. In addition, a topic modeling method is employed to extract the relationships between the S&T documents and topic keyword/s representing the documents. The topic modeling approach enables us to extract the relationships and topic keyword/s based on the semantics, not based on the simple keyword/s. Lastly, we show an experiment on the construction of the integrated knowledge base using the lightweight ontology and topic modeling, and the knowledge map services created based on the knowledge base are also introduced.

An Efficient Frequent Melody Indexing Method to Improve Performance of Query-By-Humming System (허밍 질의 처리 시스템의 성능 향상을 위한 효율적인 빈번 멜로디 인덱싱 방법)

  • You, Jin-Hee;Park, Sang-Hyun
    • Journal of KIISE:Databases
    • /
    • v.34 no.4
    • /
    • pp.283-303
    • /
    • 2007
  • Recently, the study of efficient way to store and retrieve enormous music data is becoming the one of important issues in the multimedia database. Most general method of MIR (Music Information Retrieval) includes a text-based approach using text information to search a desired music. However, if users did not remember the keyword about the music, it can not give them correct answers. Moreover, since these types of systems are implemented only for exact matching between the query and music data, it can not mine any information on similar music data. Thus, these systems are inappropriate to achieve similarity matching of music data. In order to solve the problem, we propose an Efficient Query-By-Humming System (EQBHS) with a content-based indexing method that efficiently retrieve and store music when a user inquires with his incorrect humming. For the purpose of accelerating query processing in EQBHS, we design indices for significant melodies, which are 1) frequent melodies occurring many times in a single music, on the assumption that users are to hum what they can easily remember and 2) melodies partitioned by rests. In addition, we propose an error tolerated mapping method from a note to a character to make searching efficient, and the frequent melody extraction algorithm. We verified the assumption for frequent melodies by making up questions and compared the performance of the proposed EQBHS with N-gram by executing various experiments with a number of music data.

A Lifelog Management System Based on the Relational Data Model and its Applications (관계 데이터 모델 기반 라이프로그 관리 시스템과 그 응용)

  • Song, In-Chul;Lee, Yu-Won;Kim, Hyeon-Gyu;Kim, Hang-Kyu;Haam, Deok-Min;Kim, Myoung-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.9
    • /
    • pp.637-648
    • /
    • 2009
  • As the cost of disks decreases, PCs are soon expected to be equipped with a disk of 1TB or more. Assuming that a single person generates 1GB of data per month, 1TB is enough to store data for the entire lifetime of a person. This has lead to the growth of researches on lifelog management, which manages what people see and listen to in everyday life. Although many different lifelog management systems have been proposed, including those based on the relational data model, based on ontology, and based on file systems, they have all advantages and disadvantages: Those based on the relational data model provide good query processing performance but they do not support complex queries properly; Those based on ontology handle more complex queries but their performances are not satisfactory: Those based on file systems support only keyword queries. Moreover, these systems are lack of support for lifelog group management and do not provide a convenient user interface for modifying and adding tags (metadata) to lifelogs for effective lifelog search. To address these problems, we propose a lifelog management system based on the relational data model. The proposed system models lifelogs by using the relational data model and transforms queries on lifelogs into SQL statements, which results in good query processing performance. It also supports a simplified relationship query that finds a lifelog based on other lifelogs directly related to it, to overcome the disadvantage of not supporting complex queries properly. In addition, the proposed system supports for the management of lifelog groups by providing ways to create, edit, search, play, and share them. Finally, it is equipped with a tagging tool that helps the user to modify and add tags conveniently through the ion of various tags. This paper describes the design and implementation of the proposed system and its various applications.

A Study on the Improvement of Law Analysis of Venture Preferential System on Technology-based Startups (기술기반 창업기업 중심의 벤처우대제도 법령에 관한 연구)

  • Hong, Eun-Young;An, Gi-Don;Sung, Eul-Hyun
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.15 no.2
    • /
    • pp.111-125
    • /
    • 2020
  • In the rapidly changing era of the Fourth Industrial Revolution, the business environment surrounding venture companies is also changing rapidly. In recent years, the government has reorganized the venture verification system, including expanding the types and scope of venture companies. This study analyzes the current status of venture preferential system from the perspective of technology-based start-up companies and in addition, this paper proposes a plan for improving the legal system. For analysis, The relevant provisions were confirmed through a search using "venture" as a keyword in the National Legal Information Center and the Korean Court of General Law. Then, meaningful texts were extracted along with relevant data to secure basic data and analyzed by benefits, by means and by content. As a result of the study, Venture preferential treatment system is focused on 'reduction of burden' by the means of benefits, and on 'financial' and 'production' by benefits. In conclusion, four suggestions for improvement are presented. First, efforts are needed to increase the practical applicability of venture-related clauses. Second, the venture preferential treatment system is mainly focused on mitigating the burden, so efforts are needed to find a balance. Third, the venture preferential treatment system is mainly focused on the 'non-research' field, so the benefits of the 'research' field should be expanded. Finally, efforts to discover and overcome blind spots in the venture preferential system should be supported.

A Study on Automatic Classification of Newspaper Articles Based on Unsupervised Learning by Departments (비지도학습 기반의 행정부서별 신문기사 자동분류 연구)

  • Kim, Hyun-Jong;Ryu, Seung-Eui;Lee, Chul-Ho;Nam, Kwang Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.345-351
    • /
    • 2020
  • Administrative agencies today are paying keen attention to big data analysis to improve their policy responsiveness. Of all the big data, news articles can be used to understand public opinion regarding policy and policy issues. The amount of news output has increased rapidly because of the emergence of new online media outlets, which calls for the use of automated bots or automatic document classification tools. There are, however, limits to the automatic collection of news articles related to specific agencies or departments based on the existing news article categories and keyword search queries. Thus, this paper proposes a method to process articles using classification glossaries that take into account each agency's different work features. To this end, classification glossaries were developed by extracting the work features of different departments using Word2Vec and topic modeling techniques from news articles related to different agencies. As a result, the automatic classification of newspaper articles for each department yielded approximately 71% accuracy. This study is meaningful in making academic and practical contributions because it presents a method of extracting the work features for each department, and it is an unsupervised learning-based automatic classification method for automatically classifying news articles relevant to each agency.