• Title/Summary/Keyword: keyword-based analysis

Search Result 648, Processing Time 0.028 seconds

Big Data Patent Analysis Using Social Network Analysis (키워드 네트워크 분석을 이용한 빅데이터 특허 분석)

  • Choi, Ju-Choel
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.2
    • /
    • pp.251-257
    • /
    • 2018
  • As the use of big data is necessary for increasing business value, the size of the big data market is getting bigger. Accordingly, it is important to apply competitive patents in order to gain the big data market. In this study, we conducted the patent analysis based keyword network to analyze the trend of big data patents. The analysis procedure consists of big data collection and preprocessing, network construction, and network analysis. The results of the study are as follows. Most of big data patents are related to data processing and analysis, and the keywords with high degree centrality and between centrality are "analysis", "process", "information", "data", "prediction", "server", "service", and "construction". we expect that the results of this study will offer useful information in applying big data patent.

Multimedia Contents Recommendation Method using Mood Vector in Social Networks (소셜네트워크에서 분위기 벡터를 이용한 멀티미디어 콘텐츠 추천 방법)

  • Moon, Chang Bae;Lee, Jong Yeol;Kim, Byeong Man
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.6
    • /
    • pp.11-24
    • /
    • 2019
  • The tendency of buyers of web information is changing from the cost-effectiveness to the cost-satisfaction. There is such tendency in the recommendation of multimedia contents, some of which are folksonomy-based recommendation services using mood. However, there is a problem that they does not consider synonyms. In order to solve this problem, some studies have solved the problem by defining 12 moods of Thayer model as AV values (Arousal and Valence), but the recommendation performance is lower than that of a keyword-based method at the recall level 0.1. In this paper, we propose a method based on using mood vector of multimedia contents. The method can solve the synonym problem while maintaining the same performance as the keyword-based method even at the recall level 0.1. Also, for performance analysis, we compare the proposed method with an existing method based on AV value and a keyword-based method. The result shows that the proposed method outperform the existing methods.

Contents Analysis and Synthesis Scheme for Music Album Cover Art

  • Moon, Dae-Jin;Rho, Seung-Min;Hwang, Een-Jun
    • Journal of IKEEE
    • /
    • v.14 no.4
    • /
    • pp.305-311
    • /
    • 2010
  • Most recent web search engines perform effective keyword-based multimedia contents retrieval by investigating keywords associated with multimedia contents on the Web and comparing them with query keywords. On the other hand, most music and compilation albums provide professional artwork as cover art that will be displayed when the music is played. If the cover art is not available, then the music player just displays some dummy or random images, but this has been a source of dissatisfaction. In this paper, in order to automatically create cover art that is matched with music contents, we propose a music album cover art creation scheme based on music contents analysis and result synthesis. We first (i) analyze music contents and their lyrics and extract representative keywords, (ii) expand the keywords using WordNet and generate various queries, (iii) retrieve related images from the Web using those queries, and finally (iv) synthesize them according to the user preference for album cover art. To show the effectiveness of our scheme, we developed a prototype system and reported some results.

Analysis on Types of Golf Tourism After COVID-19 by using Big Data

  • Hyun Seok Kim;Munyeong Yun;Gi-Hwan Ryu
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.1
    • /
    • pp.270-275
    • /
    • 2024
  • Introduction. In this study, purpose is to analize the types of golf tourism, inbound or outbound, by using big data and see how movement of industry is being changed and what changes have been made during and after Covid-19 in golf industry. Method Using Textom, a big data analysis tool, "golf tourism" and "Covid-19" were selected as keywords, and search frequency information of Naver and Daum was collected for a year from 1 st January, 2023 to 31st December, 2023, and data preprocessing was conducted based on this. For the suitability of the study and more accurate data, data not related to "golf tourism" was removed through the refining process, and similar keywords were grouped into the same keyword to perform analysis. As a result of the word refining process, top 36 keywords with the highest relevance and search frequency were selected and applied to this study. The top 36 keywords derived through word purification were subjected to TF-IDF analysis, visualization analysis using Ucinet6 and NetDraw programs, network analysis between keywords, and cluster analysis between each keyword through Concor analysis. Results By using big data analysis, it was found out option of oversea golf tourism is affecting on inbound golf travel. "Golf", "Tourism", "Vietnam", "Thailand" showed high frequencies, which proves that oversea golf tour is now the re-coming trends.

Research Trend Analysis of 'International Commerce and Information Review' Using SNA-based Keyword Network Analysis (SNA 기반 키워드 네트워크 분석을 활용한 '통상정보연구'의 연구동향 분석)

  • Yang, Kunwoo
    • International Commerce and Information Review
    • /
    • v.19 no.1
    • /
    • pp.23-42
    • /
    • 2017
  • International Commerce and Information Review has been playing an important role of disseminating the outstanding research results in the fields such as trade information and systems, e-trade, regional studies, e-commerce, service trade, trade laws since 1999. This paper aims to find the research trends and distinguished characteristics in the field of trade information by analyzing research keywords of the research papers published in this journal using a social network analysis method. Research keyword data collected from the homepage of the academic society were cleaned and transformed into the co-occurrence network data, which are suitable for social network analysis. NodeXL Pro was used to analyze and visualize the pre-processed data. Through clustering analysis, the most important subject fields or interests were identified as well as those which worked as intermediaries for interdisciplinary researches.

  • PDF

A Study on Recognition of Artificial Intelligence Utilizing Big Data Analysis (빅데이터 분석을 활용한 인공지능 인식에 관한 연구)

  • Nam, Soo-Tai;Kim, Do-Goan;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.129-130
    • /
    • 2018
  • Big data analysis is a technique for effectively analyzing unstructured data such as the Internet, social network services, web documents generated in the mobile environment, e-mail, and social data, as well as well formed structured data in a database. The most big data analysis techniques are data mining, machine learning, natural language processing, and pattern recognition, which were used in existing statistics and computer science. Global research institutes have identified analysis of big data as the most noteworthy new technology since 2011. Therefore, companies in most industries are making efforts to create new value through the application of big data. In this study, we analyzed using the Social Matrics which a big data analysis tool of Daum communications. We analyzed public perceptions of "Artificial Intelligence" keyword, one month as of May 19, 2018. The results of the big data analysis are as follows. First, the 1st related search keyword of the keyword of the "Artificial Intelligence" has been found to be technology (4,122). This study suggests theoretical implications based on the results.

  • PDF

Keyword Analysis of Data Technology Using Big Data Technique (빅데이터 기법을 활용한 Data Technology의 키워드 분석)

  • Park, Sung-Uk
    • Journal of Korea Technology Innovation Society
    • /
    • v.22 no.2
    • /
    • pp.265-281
    • /
    • 2019
  • With the advent of the Internet-based economy, the dramatic changes in consumption patterns have been witnessed during the last decades. The seminal change has led by Data Technology, the integrated platform of mobile, online, offline and artificial intelligence, which remained unchallenged. In this paper, I use data analysis tool (TexTom) in order to articulate the definitfite notion of data technology from Internet sources. The data source is collected for last three years (November 2015 ~ November 2018) from Google and Naver. And I have derived several key keywords related to 'Data Technology'. As a result, it was found that the key keyword technologies of Big Data, O2O (Offline-to-Online), AI, IoT (Internet of things), and cloud computing are related to Data Technology. The results of this study can be used as useful information that can be referred to when the Data Technology age comes.

Exploring the Academic Identity of Dance Pedagogy : Using Keyword Network Analysis and Time Series Analysis (무용교육학(Dance Pedagogy)의 학문적 정체성 탐색 : 시계열 관점의 키워드 네트워크 분석을 중심으로)

  • Kim, Ji-Young;Hong, Ae-Ryung
    • Journal of Digital Convergence
    • /
    • v.17 no.9
    • /
    • pp.439-450
    • /
    • 2019
  • The purpose of the study was to critically explore the academic identity of dance education as a paradigm of practice-based education. Dance education is recognized as a school dance since the first curriculum was designed, which was announced by the Ministry of Education in 1955. Although Korea's dance education has 65 years of history, its academic identity as a dance education is not very strong. Traditional dance education was teacher-centered, skills-oriented, and exercise-oriented by following the practice-based paradigm. Recently, an initiative was taken to establish a new paradigm for dance education in schools, communities, and professional fields. This study followed the keyword network analysis and reviewed the main contents of each section of dance education research from a time-series perspective. The first section (1968-1979) is a practice of dance education based on physical education; the second section (1980-1989) is a creative-based movement education for primary education; the third section (1990-1999) is a systematization of dance education courses by class; the fourth section (2000-2009) is a paradigm for cultural and artistic education; the fifth section (2010-2019) consisted of various educational practices and institutions. Based on the research results, efforts are requested to establish an academic identity that can support dance education, interdisciplinary practice, and research.

Searching for New Challenge of Information and Communication Technology in News Articles with Data Analysis (뉴스 데이터 분석을 통한 미래 정보통신의 주요 기술 탐색)

  • Lee, Sanggyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.543-546
    • /
    • 2017
  • Recently, people are using the data analysis in order to follow the new trend in information and communication technology. Media plays an important role to expand the new issue in our society, especially affected to establish social awareness about science and technology. So, We find some major technologies (Machine Learning & Blockchains) of future communication and information based on the 200 news articles through two data analysis methods such as keyword analysis and sentiment analysis. We look forward this paper to constantly develop the technology of information and communication as the guiding frame of the new scientific world.

  • PDF

Keyword-Based Contents Recommendation Web Service (키워드 기반 콘텐츠 추천 웹서비스)

  • Park, Dong-Jin;Kim, Min-Geun;Song, Hyeon-Seop;Yoon, Seok-Min;Kim, Youngjong
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.346-348
    • /
    • 2022
  • Media Contents Recommendation Web Service (service name 'mobodra') is a web service that analyzes media types and genre tastes for each user and recommends content accordingly. Users select some of the works randomly provided on the web when signing up for membership and analyze their tastes based on this. Based on this analysis, preferred content for each user is recommended. In this paper, we implement a content recommendation algorithm through item-based collaborative filtering. When the user's activity data or preference is re-examined, the above process is executed again to update the user's taste.