• 제목/요약/키워드: keyword-based analysis

검색결과 648건 처리시간 0.028초

헬스케어 서비스 리뷰를 활용한 서비스 품질 차원 별 중요 단어 파악 방안 (Keyword identifications on dimensions for service quality of Healthcare providers)

  • 이홍주
    • 지식경영연구
    • /
    • 제19권4호
    • /
    • pp.171-185
    • /
    • 2018
  • Studies on online review have carried out analysis of the rating and topic as a whole. However, it is necessary to analyze opinions on various dimensions of service quality. This study classifies reviews of healthcare services into service quality dimensions, and proposes a method to identify words that are mainly referred to in each dimension. Service quality was based on the dimensions provided by SERVQUAL, and patient reviews have collected from NHSChoice. The 2,000 sentences sampled were classified into service quality dimension of SERVQUAL and a method of extracting important keywords from sentences by service quality dimension was suggested. The RAKE algorithm is used to extract key words from a single document and an index is considered to consider frequently used words in various documents. Since we need to identify key words in various reviews, we have considered frequency and discrimination (IDF) at the same time, rather than identifying key words based only on the RAKE score. In SERVQUAL dimension, we identified the words that patients mentioned mainly, and also identified the words that patients mainly refer to by review rating.

SNA분석을 통한 AEO 인증제도 연구동향 분석에 관한 연구 (A Study on the Research Trend Analysis of AEO Certification System through SNA Analysis)

  • 김진욱;양태현;김동명;여기태
    • 디지털융복합연구
    • /
    • 제18권2호
    • /
    • pp.47-56
    • /
    • 2020
  • 본 연구는 AEO 제도관련 기존연구의 연구동향 및 특징을 파악하는 것을 연구의 목적으로 하였다. 연구의 방법론으로는 SNA법에서 제시하는 연결중심성, 근접중심성, 매개중심성을 활용하였다. 키워드 네트워크 분석결과, 연결중심성 결과에서는 "MRA", "Logistics Security"가, 근접중심성 결과에서는 "MRA", "Logistics Security"가 그리고 매개중심성 분석 결과, "AEO 활용혜택", "신뢰성"이 상위 키워드 결과값으로 도출되었다. 또한 기간별 중심성 차이분석를 통하여 특정시점을 기준으로 연구의 동향이 바뀌어 왔음을 확인하였다. 본 연구는 AEO 제도에 대한 키워드 네트워크 분석을 통하여 전 세계적인 연구 동향을 제시하였다는 점에서 연구의 시사점이 있다.

빅데이터를 활용한 근골격계 표준의료용어에 대한 키워드 네트워크 분석 (A Keyword Network Analysis of Standard Medical Terminology for Musculoskeletal System Using Big Data)

  • 최병관;최은아;남문희
    • 디지털융복합연구
    • /
    • 제20권5호
    • /
    • pp.681-693
    • /
    • 2022
  • 본 연구는 근골격계 질환으로 입원한 환자의 의무기록지 키워드 네트워크 분석을 통해 근골격계와 관련된 표준의료용어를 유추하여 보건의료현장의 비정형화된 데이터 활용 방안을 제시하기 위함이다. 분석 대상은 2010년부터 2019년까지 근골격계 질환 환자의 입퇴원요약지 145부로, 더아이엠씨(The IMC)에서 개발한 빅데이터 분석 솔루션인 TEXTOM을 활용하여 분석하였다. 1차·2차 정제과정을 통해 도출된 177개의 근골격계 관련 용어를 최종 분석하였다. 연구결과 다빈도 용어는 'Metastasis', 의료용어 체계별 분석 결과에서 임상소견은 'Metastasis', 증상은 'Weakness', 진단은 'Hepatitis', 처치는 'Remove', 신체구조는 'Spine', 약물은 'Oxycodone'이 가장 많이 사용되었다. 이러한 결과를 바탕으로 정형화되지 않은 의료데이터의 분석과 활용 및 관리 방안에 대한 시사점을 제안하고자 한다.

디지털 치료기기의 글로벌 연구 동향에 대한 계량서지학적 분석 (A Bibliometric Analysis of Global Research Trends in Digital Therapeutics)

  • 김대진;김현수;김병관;남기창
    • 대한의용생체공학회:의공학회지
    • /
    • 제45권4호
    • /
    • pp.162-172
    • /
    • 2024
  • To analyse the overall research trends in digital therapeutics, this study conducted a quantitative bibliometric analysis of articles published in the last 10 years from 2014 to 2023. We extracted bibliographic information of studies related to digital therapeutics from the Web of Science (WOS) database and performed publication status, citation analysis and keyword analysis using R (version 4.3.1) and VOSviewer (version 1.6.18) software. A total of 1,114 articles were included in the study, and the annual publication growth rate for digital therapeutics was 66.1%, a very rapid increase. "health" is the most used keyword based on Keyword Plus, and "cognitive-behavioral therapy", "depression", "healthcare", "mental-health", "meta-analysis" and "randomized controlled-trial" are the research keywords that have driven the development and impact of digital therapeutic devices over the long term. A total of five clusters were observed in the co-occurrence network analysis, with new research keywords such as "artificial intelligence", "machine learning" and "regulation" being observed in recent years. In our analysis of research trends in digital therapeutics, keywords related to mental health, such as depression, anxiety, and disorder, were the top keywords by occurrences and total link strength. While many studies have shown the positive effects of digital therapeutics, low engagement and high dropout rates remain a concern, and much research is being done to evaluate and improve them. Future studies should expand the search terms to ensure the representativeness of the results.

A Study on the Meaning of The First Slam Dunk Based on Text Mining and Semantic Network Analysis

  • Kyung-Won Byun
    • International journal of advanced smart convergence
    • /
    • 제12권1호
    • /
    • pp.164-172
    • /
    • 2023
  • In this study, we identify the recognition of 'The First Slam Dunk', which is gaining popularity as a sports-based cartoon through big data analysis of social media channels, and provide basic data for the development and development of various contents in the sports industry. Social media channels collected detailed social big data from news provided on Naver and Google sites. Data were collected from January 1, 2023 to February 15, 2023, referring to the release date of 'The First Slam Dunk' in Korea. The collected data were 2,106 Naver news data, and 1,019 Google news data were collected. TF and TF-IDF were analyzed through text mining for these data. Through this, semantic network analysis was conducted for 60 keywords. Big data analysis programs such as Textom and UCINET were used for social big data analysis, and NetDraw was used for visualization. As a result of the study, the keyword with the high frequency in relation to the subject in consideration of TF and TF-IDF appeared 4,079 times as 'The First Slam Dunk' was the keyword with the high frequency among the frequent keywords. Next are 'Slam Dunk', 'Movie', 'Premiere', 'Animation', 'Audience', and 'Box-Office'. Based on these results, 60 high-frequency appearing keywords were extracted. After that, semantic metrics and centrality analysis were conducted. Finally, a total of 6 clusters(competing movie, cartoon, passion, premiere, attention, Box-Office) were formed through CONCOR analysis. Based on this analysis of the semantic network of 'The First Slam Dunk', basic data on the development plan of sports content were provided.

포털사이트, SNS의 빅데이터를 이용한 신화소재의 브랜드 캐릭터와 연관어, 연관도 분석 (A Study on analyzing brand character of myth material, relevant keyword and relevance with big data of portal site and SNS)

  • 오세종;두일철
    • 디지털산업정보학회논문지
    • /
    • 제11권1호
    • /
    • pp.157-169
    • /
    • 2015
  • In digital marketing, means of public relations and marketing of enterprises are changing into marketing techniques of predictive analytics. A significant study can be carried out by an analysis of 'the patterns of customers' uses' using big data on major portal sites and SNSs and their correlation with related keywords. This study analyzes the origins of mythological characters in major brands such as Nike, Hermes, Versace, Canon and Starbucks. Also, it extracts related keywords and relevance using big data on portal sites and SNS and their correlation. Nike marketing that reminds people of 'the goddess of victory, Nike' formed a good combination of the brand with relevance. Most of them are based on Greek mythology and have rich materials for storytelling and artistic values in common. Hopefully, this case analysis of foreign brands would become a starting point of discovering the materials of the domestic mythological characters.

A Process-Centered Knowledge Model for Analysis of Technology Innovation Procedures

  • Chun, Seungsu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.1442-1453
    • /
    • 2016
  • Now, there are prodigiously expanding worldwide economic networks in the information society, which require their social structural changes through technology innovations. This paper so tries to formally define a process-centered knowledge model to be used to analyze policy-making procedures on technology innovations. The eventual goal of the proposed knowledge model is to apply itself to analyze a topic network based upon composite keywords from a document written in a natural language format during the technology innovation procedures. Knowledge model is created to topic network that compositing driven keyword through text mining from natural language in document. And we show that the way of analyzing knowledge model and automatically generating feature keyword and relation properties into topic networks.

A study on Metaverse keyword Consumer perception survey after Covid-19 using big Data

  • LEE, JINHO;Byun, Kwang Min;Ryu, Gi Hwan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권4호
    • /
    • pp.52-57
    • /
    • 2022
  • In this study, keywords from representative online portal sites such as Naver, Google, and Youtube were collected based on text mining analysis technique using Textom to check the changes in metqaverse after COVID-19. before Corona, it was confirmed that social media platforms such as Kakao Talk, Facebook, and Twitter were mentioned, and among the four metaverse, consumer awareness was still concentrated in the field of life logging. However, after Corona, keywords from Roblox, Fortnite, and Geppetto appeared, and keywords such as Universe, Space, Meta, and the world appeared, so Metaverse was recognized as a virtual world. As a result, it was confirmed that consumer perception changed from the life logging of Metaverse to the mirror world. Third, keywords such as cryptocurrency, cryptocurrency, coin, and exchange appeared before Corona, and the word frequency ranking for blockchain, which is an underlying technology, was high, but after Corona, the word frequency ranking fell significantly as mentioned above.

토론 대화에서의 토픽 분석을 위한 키워드 추출 및 키워드 기반 감성분석 시스템 (A System for Keyword Extraction and Keyword-based Sentiment Analysis for Topic Analysis in Discussion)

  • 정용빈;오유진;박재완;장새미;함영균
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.164-169
    • /
    • 2022
  • 토픽 모델링은 비즈니스 분석이나 기술 동향 파악 등 다방면에서 많이 사용되고 있는 기술이다. 하지만 대표적인 방법인 LDA와 같은 비지도학습의 경우, 그 알고리즘 구조상 문서의 수가 많을 때 토픽 모델링이 가능하다. 본 논문에서는 문서의 수가 적은 경우도, 키워드 및 키프레이즈를 이용한 군집화를 통해 토픽 모델링을 하고 감성분석을 통해 토픽에 대한 분석도 제시하였다. 이에 필요한 데이터 제작 및 키워드 추출, 키워드 기반 감성분석, 키워드 임베딩 및 군집화를 구현하였고, 결과를 정성적으로 보았을 때 유의미한 분석이 되는 것을 확인하였다.

  • PDF

웹 페이지 구조 분석을 통한 효과적인 동영상 검색용 키워드 추출 방법 (An Effective Keyword Extraction Method Based on Web Page Structure Analysis for Video Retrieval in WWW)

  • 이종원;최기석;장주연;낭종호
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제35권3호
    • /
    • pp.103-110
    • /
    • 2008
  • 본 논문에서는 웹 동영상 페이지의 구조를 바탕으로 하여, 웹 동영상의 관리 및 검색을 위한 주석용 키워드를 자동 추출하는 방법을 제안한다. 제안 방법은 웹 동영상 페이지의 구조를 포함된 동영상의 개수와 주변 텍스트 구성의 복잡도를 기준으로 4가지 타입으로 구분하고, 타입 별로 키워드를 추출하는 방법을 달리한다. 1,087개의 웹 동영상 페이지(2,462개의 동영상)를 바탕으로 실험한 결과에 의하면 본 논문에서 제안하는 방법은 기존 웹 이미지 검색 시스템을 위한 추출 방법보다 재현율 면에서 18%의 성능 향상을 보였다. 따라서 논문에서 제안하는 방법은 일반적인 웹 동영상 검색 시스템을 위한 키워드 추출에 널리 적용 될 수 있다.