• Title/Summary/Keyword: keyword-based analysis

Search Result 648, Processing Time 0.026 seconds

Comparison of Models for Stock Price Prediction Based on Keyword Search Volume According to the Social Acceptance of Artificial Intelligence (인공지능의 사회적 수용도에 따른 키워드 검색량 기반 주가예측모형 비교연구)

  • Cho, Yujung;Sohn, Kwonsang;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.103-128
    • /
    • 2021
  • Recently, investors' interest and the influence of stock-related information dissemination are being considered as significant factors that explain stock returns and volume. Besides, companies that develop, distribute, or utilize innovative new technologies such as artificial intelligence have a problem that it is difficult to accurately predict a company's future stock returns and volatility due to macro-environment and market uncertainty. Market uncertainty is recognized as an obstacle to the activation and spread of artificial intelligence technology, so research is needed to mitigate this. Hence, the purpose of this study is to propose a machine learning model that predicts the volatility of a company's stock price by using the internet search volume of artificial intelligence-related technology keywords as a measure of the interest of investors. To this end, for predicting the stock market, we using the VAR(Vector Auto Regression) and deep neural network LSTM (Long Short-Term Memory). And the stock price prediction performance using keyword search volume is compared according to the technology's social acceptance stage. In addition, we also conduct the analysis of sub-technology of artificial intelligence technology to examine the change in the search volume of detailed technology keywords according to the technology acceptance stage and the effect of interest in specific technology on the stock market forecast. To this end, in this study, the words artificial intelligence, deep learning, machine learning were selected as keywords. Next, we investigated how many keywords each week appeared in online documents for five years from January 1, 2015, to December 31, 2019. The stock price and transaction volume data of KOSDAQ listed companies were also collected and used for analysis. As a result, we found that the keyword search volume for artificial intelligence technology increased as the social acceptance of artificial intelligence technology increased. In particular, starting from AlphaGo Shock, the keyword search volume for artificial intelligence itself and detailed technologies such as machine learning and deep learning appeared to increase. Also, the keyword search volume for artificial intelligence technology increases as the social acceptance stage progresses. It showed high accuracy, and it was confirmed that the acceptance stages showing the best prediction performance were different for each keyword. As a result of stock price prediction based on keyword search volume for each social acceptance stage of artificial intelligence technologies classified in this study, the awareness stage's prediction accuracy was found to be the highest. The prediction accuracy was different according to the keywords used in the stock price prediction model for each social acceptance stage. Therefore, when constructing a stock price prediction model using technology keywords, it is necessary to consider social acceptance of the technology and sub-technology classification. The results of this study provide the following implications. First, to predict the return on investment for companies based on innovative technology, it is most important to capture the recognition stage in which public interest rapidly increases in social acceptance of the technology. Second, the change in keyword search volume and the accuracy of the prediction model varies according to the social acceptance of technology should be considered in developing a Decision Support System for investment such as the big data-based Robo-advisor recently introduced by the financial sector.

Keyword Network Analysis of Trends in Research on Climate Change Education (키워드 네트워크 분석을 활용한 기후변화 교육 관련 연구동향 분석)

  • Kim, Soon Shik;Lee, Sang Gyun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.13 no.3
    • /
    • pp.226-237
    • /
    • 2020
  • The purpose of the research is to analyze research trends related to climate change education by network analysis based on keywords extracted from the research title. For this purpose, 62 papers were selected from Korean Citation Index(KCI) journals published from 2011 to 2020 using such keywords as "climate change" and "climate change education" in the Research Information Sharing Service. The analysis procedure consisted of selection of analysis papers, keyword extraction and purification, and keyword network analysis and visualization. Textom, Ucinet 6.0, and NetDraw were used to analyze the frequency, degree centrality, and betweenness centrality. The results of the research showed that, first, Early 'Energy and Climate Change Education' had the highest frequency of papers examining climate change education. Second, the keywords/phrases that appeared most frequently in research on climate change education were "program" "energy," "analysis," "elementary school," "elementary school," "elementary school students," "development," and "impact." Third, the analysis of the centrality of betweenness centrality showed that the index of 'program', 'primary students' and 'primary schools' were the highest, and the largest group was 'development and effect of teaching and learning programs'. Based on these results, it was concluded that future research on climate change education needs to be examined in further detail and expanded into more specific areas.

Keyword Weight based Paragraph Extraction Algorithm (문단 가중치 분석 기반 본문 영역 선정 알고리즘)

  • Lee, Jongwon;Yu, Seongjong;Kim, Doan;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.462-463
    • /
    • 2018
  • Traditional document analysis systems used word-based analysis using a morphological analyzer or TF-IDF technique. These systems have the advantage of being able to derive key keywords by calculating the weights of the keywords. On the other hand, it is not appropriate to analyze the contents of documents due to the structural limitations. To solve this problem, the proposed algorithm calculates the weights of the documents in the document and divides the paragraphs into areas. And we calculate the importance of the divided regions and let the user know the area with the most important paragraphs in the document. So, it is expected that the user will be provided with a service suitable for analyzing documents rather than using existing document analysis systems.

  • PDF

Analysis on Domestic Franchise Food Tech Interest by using Big Data

  • Hyun Seok Kim;Yang-Ja Bae;Munyeong Yun;Gi-Hwan Ryu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.179-184
    • /
    • 2024
  • Franchise are now a red ocean in Food industry and they need to find other options to appeal for their product, the uprising content, food tech. The franchises are working on R&D to help franchisees with the operations. Through this paper, we analyze the franchise interest on food tech and to help find the necessity of development for franchisees who are in needs with hand, not of human, but of technology. Using Textom, a big data analysis tool, "franchise" and "food tech" were selected as keywords, and search frequency information of Naver and Daum was collected for a year from 01 January, 2023 to 31 December, 2023, and data preprocessing was conducted based on this. For the suitability of the study and more accurate data, data not related to "food tech" was removed through the refining process, and similar keywords were grouped into the same keyword to perform analysis. As a result of the word refining process, a total of 10,049 words were derived, and among them, the top 50 keywords with the highest relevance and search frequency were selected and applied to this study. The top 50 keywords derived through word purification were subjected to TF-IDF analysis, visualization analysis using Ucinet6 and NetDraw programs, network analysis between keywords, and cluster analysis between each keyword through Concor analysis. By using big data analysis, it was found out that franchise do have interest on food tech. "technology", "franchise", "robots" showed many interests and keyword "R&D" showed that franchise are keen on developing food tech to seize competitiveness in Franchise Industry.

A Research Analysis of QR code based on big data in Korea

  • Lee, Eun-ji;Kim, Soo Kyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.189-200
    • /
    • 2021
  • Recently, Information and Communication Technology and SMART Phone Technology have been rapidly developed. According to the increase of data use, the era of big data has come. With the approach of non-contact society, QR Codes are becoming inseparable in our lives. In this paper, we are trying to figure out the implications of QR Code research based on Big Data in Korea. The purpose of this study is to first examine the previous studies on "QR Code" and conduct an analysis on keywords by field using Big Data. Second, for data visualization WordCloud analysis and network analysis are performed on "QR Code" frequent keyword. Third, we would like to present the research direction to future researchers regarding "QR Code". In the results, First of all, research trends showed that research is on the rise and that various fields are being utilized. Second, the results of the analysis of frequent keyword resulted in similar results overall, with some differences depending on the field and year. Third, we found that the visualization results according to the frequent keyword were also analyzed in the same way as the frequent keyword analysis results. The practical implications of the theoretical findings are as follows. First, 'QR Code' needs to be studied as a means of information delivery, not as a technical aspect. Second, it can be seen that "QR Code" is developing reflecting social trends or issues. With both theoretical and practical implications, we are trying to provide the strategic ways of QR-code in future.

Identification of sentiment keywords association-based hotel network of hotel review using mapper method in topological data analysis (Topological Data Analysis 기법을 활용한 호텔 리뷰데이터의 감성 키워드 기반 호텔 관계망 구축)

  • Jeon, Ye-Seul;Kim, Jeong-Jae
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.1
    • /
    • pp.75-86
    • /
    • 2020
  • Hotel review data can extract various information that includes purchasing factors that lead to consumption, advantages, and disadvantages for hotels. In particular, the sentiment keyword of the review data helps consumers understand the pros and cons of hotels. However, it is not efficient for consumers to read a large number of reviews. Therefore, it is necessary to offer a summary review to customers. In this study, we suggest providing summary information on sentiment keywords association as well as a network of hotels based on sentiment keywords. Based on a sentiment keyword dictionary, the extracted sentiment keywords associations construct the hotel network through topological data analysis based mapper. This hotel network allows a consumer to find some hotels associated with specific sentiment keywords as well as recommends the same related hotels. This summary information provides users with a summarized emotional assessment of hotels and helps hotel marketing teams understand consumers' perceptions of their hotel.

Research Trends in Global Cruise Industry Using Keyword Network Analysis (키워드 네트워크 분석을 활용한 세계 크루즈산업 연구동향)

  • Jhang, Se-Eun;Lee, Su-Ho
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.607-614
    • /
    • 2014
  • This article aims to explore and discuss research trends in global cruise industry using keyword network analysis. We visualize keyword networks in each of four groups of 1982-1999, 2000-2004, 2005-2009, 2010-2014 based on the top 20 keyword nodes' degree centrality and betweenness centrality which are selected among four centrality measurements, comparing them with frequency order. The article shows that keyword frequency collected from 240 articles published in international journals is subject to Zipf's law and nodes degree distribution also exhibits power law. We try to find out research trends in global cruise industry to change some important keywords diachronically, visualizing several networks focusing on the top two keywords, cruise and tourism, belonging to all the four year groups, with high degree and betweenness centrality values. Interestingly enough, a new node, China, connecting the top most keywords, appears in the most recent period of 2010-2014 when China has emerged as one of the rapid development countries in global cruise industry. Therefore keyword network analysis used in this article will be useful to understand research trends in global cruise industry because of increase and decrease of numbers of network types in different year groups and the visual connection between important nodes in giant components.

A Study on the Structure of Research Domain for Internet of Things Based on Keyword Analysis (키워드 분석 기반 사물인터넷 연구 도메인 구조 분석)

  • Namn, Su-Hyeon
    • Management & Information Systems Review
    • /
    • v.36 no.1
    • /
    • pp.273-290
    • /
    • 2017
  • Internet of Things (IoT) is considered to be the next wave of Information Technology transformation after the Internet has changed the process of doing business. Since the domain of IoT ranging from the sensor technology to service to the users is wide, the structure of the research domain is not delineated clearly. To do that we suggest to use the Technology Stack Model proposed by Porter et al.(2014) to measure the maturity level of IoT in organizations. Based on the Stack Model, for the general understandings of IoT, we do keyword analyses on the academic papers whose major research issue is IoT. It is found that the current status of IoT application from the perspectives of cloud and big data analytics is not active, meaning that the real value of IoT has not been realized. We also examine the cases which deal with the part of cloud process which is crucial for value accrual. Based on these findings, we suggest the future direction of IoT research. We also propose that IT is to value chain what IoT is to the Stack Model to derive value in organizations.

  • PDF

Exploring the Key Technologies on Next Production Innovation (4차 산업혁명 차세대 생산혁신 기술 탐색: 키워드 네트워크를 중심으로)

  • Lee, Suchul;Ko, Mihyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.199-207
    • /
    • 2018
  • This study aims to analyze Next Production Revolution (NPR) technologies through evidence-based keyword network in order to cope with the change of production paradigm called the Fourth Industrial Revolution (4IR). For the analysis, a total of 441 papers related to NPR or 4IR were extracted and the NPR technology network was constructed based on the simultaneous appearance relationship of the author keywords of these papers. Based on the NPR technology network, we explored key technologies through analysis of centrality and keyword group. As a result, technologies such as 'digital twin' and 'modeling and simulation', discovering insights by connecting the virtual and physical world in real time and reflecting them into design and process, are analyzed as key technologies.

A Study on Major Issues of Artificial Intelligence Using Keyword Analysis of Papers: Focusing on KCI Journals in the Field of Social Science (논문 키워드 분석을 통한 인공지능의 주요 이슈에 관한 고찰 : 사회과학 분야의 KCI 등재학술지를 중심으로)

  • Chung, Do-Bum;You, Hwasun;Mun, Hee Jin
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.1-9
    • /
    • 2022
  • Today, artificial intelligence (AI) has emerged as a key driver of national competitiveness, but it is also causing unexpected side effects in society. This study intends to examine major social issues by collecting papers on AI targeting KCI journals in the field of social science. Therefore, we conducted keyword analysis of papers from 2016 to 2020. As a result of the analysis, the keywords for 'robot' and 'education' appeared the most, and the top six clusters (issues) were derived through the keyword network. The main issues are as follows: the background and/or basic concept of AI, AI education, side effects of AI, legal issues of AI-based creations, intention to use AI products/services, and AI ethics. The results of this study can be used to expand the discussion on the social aspects of AI and to find policy directions at the national level.