• 제목/요약/키워드: keypoint detection

검색결과 36건 처리시간 0.017초

Multi-resolution Fusion Network for Human Pose Estimation in Low-resolution Images

  • Kim, Boeun;Choo, YeonSeung;Jeong, Hea In;Kim, Chung-Il;Shin, Saim;Kim, Jungho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권7호
    • /
    • pp.2328-2344
    • /
    • 2022
  • 2D human pose estimation still faces difficulty in low-resolution images. Most existing top-down approaches scale up the target human bonding box images to the large size and insert the scaled image into the network. Due to up-sampling, artifacts occur in the low-resolution target images, and the degraded images adversely affect the accurate estimation of the joint positions. To address this issue, we propose a multi-resolution input feature fusion network for human pose estimation. Specifically, the bounding box image of the target human is rescaled to multiple input images of various sizes, and the features extracted from the multiple images are fused in the network. Moreover, we introduce a guiding channel which induces the multi-resolution input features to alternatively affect the network according to the resolution of the target image. We conduct experiments on MS COCO dataset which is a representative dataset for 2D human pose estimation, where our method achieves superior performance compared to the strong baseline HRNet and the previous state-of-the-art methods.

그래프 컨벌루션 네트워크 기반 주거지역 감시시스템의 얼굴인식 알고리즘 개선 (Improvement of Face Recognition Algorithm for Residential Area Surveillance System Based on Graph Convolution Network)

  • 담하의;민병원
    • 사물인터넷융복합논문지
    • /
    • 제10권2호
    • /
    • pp.1-15
    • /
    • 2024
  • 스마트 지역사회의 구축은 지역사회의 안전을 보장하는 새로운 방법이자 중요한 조치이다. 촬영 각도로 인한 얼굴 기형 및 기타 외부 요인의 영향으로 인한 신원 인식 정확도 문제를 해결하기 위해 이 논문에서는 네트워크 모델을 구축할 때 전체 그래프 컨벌루션 모델을 설계하고, 그래프 컨벌루션 모델에 협력하여 얼굴의 핵심을 추출한다. 또한 얼굴의 핵심을 특정 규칙에 따라 핵심 포인트를 구축하며 이미지 컨벌루션 구조를 구축한 후 이미지 컨벌루션 모델을 추가하여 이미지 특징의 핵심을 개선한다. 마지막으로 두 사람의 얼굴의 이미지 특징 텐서를 계산하고 전체 연결 레이어를 사용하여 집계된 특징을 추출하고 판별하여 인원의 신원이 동일한지 여부를 결정한다. 최종적으로 다양한 실험과 테스트를 거쳐 이 글에서 설계한 네트워크의 얼굴 핵심 포인트에 대한 위치 정확도 AUC 지표는 300W 오픈 소스 데이터 세트에서 85.65%에 도달했다. 자체 구축 데이터 세트에서 88.92% 증가했다. 얼굴 인식 정확도 측면에서 이 글에서 제안한 IBUG 오픈 소스 데이터 세트에서 네트워크의 인식 정확도는 83.41% 증가했으며 자체 구축 데이터 세트의 인식 정확도는 96.74% 증가했다. 실험 결과는 이 글에서 설계된 네트워크가 얼굴을 모니터링하는 데 더 높은 탐지 및 인식 정확도를 가지고 있음을 보여준다.

임베디드 환경에서 SIFT 알고리즘의 실시간 처리를 위한 특징점 검출기의 하드웨어 구현 (A Hardware Design of Feature Detector for Realtime Processing of SIFT(Scale Invariant Feature Transform) Algorithm in Embedded Systems)

  • 박찬일;이수현;정용진
    • 대한전자공학회논문지SD
    • /
    • 제46권3호
    • /
    • pp.86-95
    • /
    • 2009
  • SIFT(Scale Invariant Feature Transform) 알고리즘은 영상 데이터로부터 객체의 꼭지점이나 모서리와 같이 색상 성분의 차가 심한 영역에서 특징점을 찾아 벡터성분을 추출하는 알고리즘으로, 현재 얼굴인식, 3차원 객체 인식, 파노라마, 3차원 영상 복원 작업의 핵심 알고리즘으로 연구 되고 있다. 본 논문에서는 SIFT 알고리즘을 임베디드 환경에서 실시간으로 처리하기 위해 가장 연산량이 많은 특징점 위치 결정 단계를 Verilog HDL 언어를 이용하여 FPGA로 구현하고 그 성능을 분석한다. 하드웨어는 100MHz 클럭에서 $1,280{\times}960$영상기준 25ms, $640{\times}480$영상기준 5ms의 빠른 연산속도를 보인다. 그리고 Xilinx Virtex4 XC4VLS60 FPGA를 타겟으로 Synplify Pro 8.1i합성툴을 이용하여 합성시 약 45,792LUT(85%)의 결과를 나타낸다.

무인점포 이상행동 인식을 위한 유전 알고리즘 기반 자세 추정 모델 최적화 (Optimization of Pose Estimation Model based on Genetic Algorithms for Anomaly Detection in Unmanned Stores)

  • 이상협;박장식
    • 한국산업융합학회 논문집
    • /
    • 제26권1호
    • /
    • pp.113-119
    • /
    • 2023
  • In this paper, we propose an optimization of a pose estimation deep learning model for recognition of abnormal behavior in unmanned stores using radio frequencies. The radio frequency use millimeter wave in the 30 GHz to 300 GHz band. Due to the short wavelength and strong straightness, it is a frequency with less grayness and less interference due to radio absorption on the object. A millimeter wave radar is used to solve the problem of personal information infringement that may occur in conventional CCTV image-based pose estimation. Deep learning-based pose estimation models generally use convolution neural networks. The convolution neural network is a combination of convolution layers and pooling layers of different types, and there are many cases of convolution filter size, number, and convolution operations, and more cases of combining components. Therefore, it is difficult to find the structure and components of the optimal posture estimation model for input data. Compared with conventional millimeter wave-based posture estimation studies, it is possible to explore the structure and components of the optimal posture estimation model for input data using genetic algorithms, and the performance of optimizing the proposed posture estimation model is excellent. Data are collected for actual unmanned stores, and point cloud data and three-dimensional keypoint information of Kinect Azure are collected using millimeter wave radar for collapse and property damage occurring in unmanned stores. As a result of the experiment, it was confirmed that the error was moored compared to the conventional posture estimation model.

저화질 안면 이미지의 화질 개선를 통한 안면 특징점 검출 모델의 성능 향상 (Enhancing the performance of the facial keypoint detection model by improving the quality of low-resolution facial images)

  • 이경욱;이예진;박종혁
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.171-187
    • /
    • 2023
  • 저화소의 감시카메라와 같은 촬영 장비를 통해 사람의 얼굴을 인식할 경우, 화질이 낮아 얼굴을 포착하기 어렵다는 문제점이 있다. 이렇게, 사람의 얼굴을 인식하기 어렵다면 범죄용의자나 실종자를 특정해내지 못하는 등의 문제가 발생할 수 있다. 기존 이미지 속 안면 인식에 관한 연구들에서는 정제된 데이터셋을 사용하였기 때문에 다양한 환경에서의 성능을 가늠하기 어렵다는 한계가 존재한다. 이에, 본 논문에서는 저화질 이미지에서 안면 인식 성능이 떨어지는 문제를 해결하기 위해 다양한 환경을 고려한 저화질 안면 이미지에 대해 화질 개선을 수행하여 고화질 이미지를 생성한 뒤, 안면 특징점 검출의 성능 향상시키는 방법을 제안한다. 제안 방법의 현실 적용 가능성을 확인하기 위해 전체 이미지에서 사람이 상대적으로 작게 나타나는 데이터셋을 선정하여 실험을 수행하였다. 또한 마스크 착용 상황을 고려한 안면 이미지 데이터셋을 선정하여, 현실 문제로의 확장 가능성을 탐구하였다. 안면 이미지의 화질을 개선하여 특징점 검출 모델의 성능을 측정한 결과, 개선 후 안면의 검출 여부는 마스크를 착용하지 않은 이미지의 경우 평균 3.47배, 마스크를 착용한 경우 평균 9.92배로 성능 향상을 확인할 수 있었다. 안면 특징점에 대한 RMSE는 마스크를 착용한 이미지의 경우 평균 8.49배 감소, 마스크를 착용하지 않은 경우 평균 2.02배 감소한 것을 확인할 수 있었다. 이에, 화질 개선을 통해 저화질로 포착된 안면 이미지에 대한 인식률을 높여 제안 방법의 활용 가능성을 확인할 수 있었다.

Lightening of Human Pose Estimation Algorithm Using MobileViT and Transfer Learning

  • Kunwoo Kim;Jonghyun Hong;Jonghyuk Park
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권9호
    • /
    • pp.17-25
    • /
    • 2023
  • 본 논문에서는 매개변수가 더 적고, 빠르게 추정 가능한 MobileViT 기반 모델을 통해 사람 자세 추정 과업을 수행할 수 있는 모델을 제안한다. 기반 모델은 합성곱 신경망의 특징과 Vision Transformer의 특징이 결합한 구조를 통해 경량화된 성능을 입증한다. 본 연구에서 주요 매커니즘이 되는 Transformer는 그 기반의 모델들이 컴퓨터 비전 분야에서도 합성곱 신경망 기반의 모델들 대비 더 나은 성능을 보이며, 영향력이 커지게 되었다. 이는 사람 자세 추정 과업에서도 동일한 상황이며, Vision Transformer기반의 ViTPose가 COCO, OCHuman, MPII 등 사람 자세 추정 벤치마크에서 모두 최고 성능을 지키고 있는 것이 그 적절한 예시이다. 하지만 Vision Transformer는 매개변수의 수가 많고 상대적으로 많은 연산량을 요구하는 무거운 모델 구조를 가지고 있기 때문에, 학습에 있어 사용자에게 많은 비용을 야기시킨다. 이에 기반 모델은 Vision Transformer가 많은 계산량을 요구하는 부족한 Inductive Bias 계산 문제를 합성곱 신경망 구조를 통한 Local Representation으로 극복하였다. 최종적으로, 제안 모델은 MS COCO 사람 자세 추정 벤치마크에서 제공하는 Validation Set으로 ViTPose 대비 각각 5분의 1과 9분의 1만큼의 3.28GFLOPs, 972만 매개변수를 나타내었고, 69.4 Mean Average Precision을 달성하여 상대적으로 우수한 성능을 보였다.