Kim, Boeun;Choo, YeonSeung;Jeong, Hea In;Kim, Chung-Il;Shin, Saim;Kim, Jungho
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권7호
/
pp.2328-2344
/
2022
2D human pose estimation still faces difficulty in low-resolution images. Most existing top-down approaches scale up the target human bonding box images to the large size and insert the scaled image into the network. Due to up-sampling, artifacts occur in the low-resolution target images, and the degraded images adversely affect the accurate estimation of the joint positions. To address this issue, we propose a multi-resolution input feature fusion network for human pose estimation. Specifically, the bounding box image of the target human is rescaled to multiple input images of various sizes, and the features extracted from the multiple images are fused in the network. Moreover, we introduce a guiding channel which induces the multi-resolution input features to alternatively affect the network according to the resolution of the target image. We conduct experiments on MS COCO dataset which is a representative dataset for 2D human pose estimation, where our method achieves superior performance compared to the strong baseline HRNet and the previous state-of-the-art methods.
스마트 지역사회의 구축은 지역사회의 안전을 보장하는 새로운 방법이자 중요한 조치이다. 촬영 각도로 인한 얼굴 기형 및 기타 외부 요인의 영향으로 인한 신원 인식 정확도 문제를 해결하기 위해 이 논문에서는 네트워크 모델을 구축할 때 전체 그래프 컨벌루션 모델을 설계하고, 그래프 컨벌루션 모델에 협력하여 얼굴의 핵심을 추출한다. 또한 얼굴의 핵심을 특정 규칙에 따라 핵심 포인트를 구축하며 이미지 컨벌루션 구조를 구축한 후 이미지 컨벌루션 모델을 추가하여 이미지 특징의 핵심을 개선한다. 마지막으로 두 사람의 얼굴의 이미지 특징 텐서를 계산하고 전체 연결 레이어를 사용하여 집계된 특징을 추출하고 판별하여 인원의 신원이 동일한지 여부를 결정한다. 최종적으로 다양한 실험과 테스트를 거쳐 이 글에서 설계한 네트워크의 얼굴 핵심 포인트에 대한 위치 정확도 AUC 지표는 300W 오픈 소스 데이터 세트에서 85.65%에 도달했다. 자체 구축 데이터 세트에서 88.92% 증가했다. 얼굴 인식 정확도 측면에서 이 글에서 제안한 IBUG 오픈 소스 데이터 세트에서 네트워크의 인식 정확도는 83.41% 증가했으며 자체 구축 데이터 세트의 인식 정확도는 96.74% 증가했다. 실험 결과는 이 글에서 설계된 네트워크가 얼굴을 모니터링하는 데 더 높은 탐지 및 인식 정확도를 가지고 있음을 보여준다.
SIFT(Scale Invariant Feature Transform) 알고리즘은 영상 데이터로부터 객체의 꼭지점이나 모서리와 같이 색상 성분의 차가 심한 영역에서 특징점을 찾아 벡터성분을 추출하는 알고리즘으로, 현재 얼굴인식, 3차원 객체 인식, 파노라마, 3차원 영상 복원 작업의 핵심 알고리즘으로 연구 되고 있다. 본 논문에서는 SIFT 알고리즘을 임베디드 환경에서 실시간으로 처리하기 위해 가장 연산량이 많은 특징점 위치 결정 단계를 Verilog HDL 언어를 이용하여 FPGA로 구현하고 그 성능을 분석한다. 하드웨어는 100MHz 클럭에서 $1,280{\times}960$영상기준 25ms, $640{\times}480$영상기준 5ms의 빠른 연산속도를 보인다. 그리고 Xilinx Virtex4 XC4VLS60 FPGA를 타겟으로 Synplify Pro 8.1i합성툴을 이용하여 합성시 약 45,792LUT(85%)의 결과를 나타낸다.
In this paper, we propose an optimization of a pose estimation deep learning model for recognition of abnormal behavior in unmanned stores using radio frequencies. The radio frequency use millimeter wave in the 30 GHz to 300 GHz band. Due to the short wavelength and strong straightness, it is a frequency with less grayness and less interference due to radio absorption on the object. A millimeter wave radar is used to solve the problem of personal information infringement that may occur in conventional CCTV image-based pose estimation. Deep learning-based pose estimation models generally use convolution neural networks. The convolution neural network is a combination of convolution layers and pooling layers of different types, and there are many cases of convolution filter size, number, and convolution operations, and more cases of combining components. Therefore, it is difficult to find the structure and components of the optimal posture estimation model for input data. Compared with conventional millimeter wave-based posture estimation studies, it is possible to explore the structure and components of the optimal posture estimation model for input data using genetic algorithms, and the performance of optimizing the proposed posture estimation model is excellent. Data are collected for actual unmanned stores, and point cloud data and three-dimensional keypoint information of Kinect Azure are collected using millimeter wave radar for collapse and property damage occurring in unmanned stores. As a result of the experiment, it was confirmed that the error was moored compared to the conventional posture estimation model.
저화소의 감시카메라와 같은 촬영 장비를 통해 사람의 얼굴을 인식할 경우, 화질이 낮아 얼굴을 포착하기 어렵다는 문제점이 있다. 이렇게, 사람의 얼굴을 인식하기 어렵다면 범죄용의자나 실종자를 특정해내지 못하는 등의 문제가 발생할 수 있다. 기존 이미지 속 안면 인식에 관한 연구들에서는 정제된 데이터셋을 사용하였기 때문에 다양한 환경에서의 성능을 가늠하기 어렵다는 한계가 존재한다. 이에, 본 논문에서는 저화질 이미지에서 안면 인식 성능이 떨어지는 문제를 해결하기 위해 다양한 환경을 고려한 저화질 안면 이미지에 대해 화질 개선을 수행하여 고화질 이미지를 생성한 뒤, 안면 특징점 검출의 성능 향상시키는 방법을 제안한다. 제안 방법의 현실 적용 가능성을 확인하기 위해 전체 이미지에서 사람이 상대적으로 작게 나타나는 데이터셋을 선정하여 실험을 수행하였다. 또한 마스크 착용 상황을 고려한 안면 이미지 데이터셋을 선정하여, 현실 문제로의 확장 가능성을 탐구하였다. 안면 이미지의 화질을 개선하여 특징점 검출 모델의 성능을 측정한 결과, 개선 후 안면의 검출 여부는 마스크를 착용하지 않은 이미지의 경우 평균 3.47배, 마스크를 착용한 경우 평균 9.92배로 성능 향상을 확인할 수 있었다. 안면 특징점에 대한 RMSE는 마스크를 착용한 이미지의 경우 평균 8.49배 감소, 마스크를 착용하지 않은 경우 평균 2.02배 감소한 것을 확인할 수 있었다. 이에, 화질 개선을 통해 저화질로 포착된 안면 이미지에 대한 인식률을 높여 제안 방법의 활용 가능성을 확인할 수 있었다.
본 논문에서는 매개변수가 더 적고, 빠르게 추정 가능한 MobileViT 기반 모델을 통해 사람 자세 추정 과업을 수행할 수 있는 모델을 제안한다. 기반 모델은 합성곱 신경망의 특징과 Vision Transformer의 특징이 결합한 구조를 통해 경량화된 성능을 입증한다. 본 연구에서 주요 매커니즘이 되는 Transformer는 그 기반의 모델들이 컴퓨터 비전 분야에서도 합성곱 신경망 기반의 모델들 대비 더 나은 성능을 보이며, 영향력이 커지게 되었다. 이는 사람 자세 추정 과업에서도 동일한 상황이며, Vision Transformer기반의 ViTPose가 COCO, OCHuman, MPII 등 사람 자세 추정 벤치마크에서 모두 최고 성능을 지키고 있는 것이 그 적절한 예시이다. 하지만 Vision Transformer는 매개변수의 수가 많고 상대적으로 많은 연산량을 요구하는 무거운 모델 구조를 가지고 있기 때문에, 학습에 있어 사용자에게 많은 비용을 야기시킨다. 이에 기반 모델은 Vision Transformer가 많은 계산량을 요구하는 부족한 Inductive Bias 계산 문제를 합성곱 신경망 구조를 통한 Local Representation으로 극복하였다. 최종적으로, 제안 모델은 MS COCO 사람 자세 추정 벤치마크에서 제공하는 Validation Set으로 ViTPose 대비 각각 5분의 1과 9분의 1만큼의 3.28GFLOPs, 972만 매개변수를 나타내었고, 69.4 Mean Average Precision을 달성하여 상대적으로 우수한 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.