• Title/Summary/Keyword: kerosene

Search Result 563, Processing Time 0.021 seconds

A Study on the Cooling Mechanism in Liquid Rocket Engine of 10tf-Thrust Level using Kerosene as a Fuel (케로신을 연료로 하는 10톤급 액체로켓엔진의 냉각 기구에 관한 연구)

  • Han, Pung-Gyu;Nam-Gung, Hyeok-Jun;Jo, Won-Guk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.66-72
    • /
    • 2003
  • The cooling mechanism for a liquid rocket engine of 10tf-thrust using kerosene as a fuel was studied from the viewpoint of both the regenerative and curtain cooling. Based on the concept of a highly-stratified gas flow in the combustion chamber, the cross section of the combustion chamber was spilt into 2 independent parts, core and exterior part. Additional fuel is injected into the exterior section and gas temperature can be reduced in the exterior section. Consequently, the heat flux into the coolant and wall temperature are reduced and the thermal stability of a liquid rocket en g i.ne could be improved.

Investigation of Thermophysical Properties of the Kerosene Using the Surrogate Model Fuel at Supercritical Conditions (초임계 영역에서 대체 모델 연료를 이용한 케로신의 열역학적 상태량 연구)

  • Kim, Kuk-Jin;Heo, Jun-Young;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.823-833
    • /
    • 2010
  • For the study of thermophysical properties of kerosene for the liquid rocket and aviation fuels, the surrogate models are investigated. The density distributions based on the real gas equations of state(Soave modification of Redlich-Kwong and Peng-Robinson equation of state) and NIST SUPERTRAPP(extended corresponding state principle) are compared with the previous experimental results at supercritical conditions. The error range of thermophysical properties analyzed for the surrogate models as well. Peng-Robinson equation of state and extended corresponding state principle are especially accurate for the hydrocarbon fuels but the appropriate surrogate models need to be chosen to the operation conditions such as pressure and temperature.

Study of Soot Formation in Fuel Rich Combustion (농후 연소 추진제의 Soot 생성 특성에 관한 연구)

  • Yu, Jung-Min;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.143-147
    • /
    • 2007
  • Kerosene and diesel are compounded fuels with various types of hydrocarbon elements and difficult to model the chemical kinetics. This study focuses on the prediction of the non-equilibrium reaction of fuel-rich combustion with detailed kinetics developed by Dagaut using PSR(perfectly stirred reactor) assumption. In Dagaut's surrogate model for kerosene and diesel, chemical kinetics consists of 2352 reaction steps with 298 chemical species. Also, Frenklach's soot model was implemented along with detailed kinetics to calculate the gas properties of fuel rich combustion efflux.

  • PDF

Experimental Study on Fluid Viscosity Effects for Centrifugal Turbopump Efficiency (유체점성에 따른 원심형 터보펌프 효율에 관한 실험적 연구)

  • Kim, Jin-Sun;Choi, Chang-Ho;Ko, Youngsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.91-100
    • /
    • 2016
  • Efficiency characteristics of centrifugal turbopumps for a liquid rocket engine were investigated. Predicting the performance of pumps for a turbopump assembly test, the variation on pump efficiency by working fluids was analyzed from pump component tests. Water and liquid nitrogen (LN2) were used for the component test, kerosene (Jet A-1) and liquid oxygen (LOX) were adapted for the turbopump assembly (TPU) test as working fluids. Overall performance of the pumps was investigated covering design/off-design operating points and the pump efficiency on the environment of real media (LOX/kerosene) could be modified from the pump component tests.

A Study on Micro-Hole Drilling by EDM (미세구멍의 방전가공에 관한 연구)

  • 윤재웅;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1147-1154
    • /
    • 1990
  • Micro-hole drilling by EDM and production of fine rods for the tool electrode or other purpose have become very important in industry. This paper suggests a new method for production of very fine rods by ultrasonic-assisted chemical machining and describes the machining characteristics of micro-hole drilling by EDM. For fine rods, copper wires of initial diameter of 250.mum are used and successfully machined into a diameter of less than 30.mum with good repeatability. The ultrasonic agitation not only accelerated the material removal rate uniformly, but also produced smooth surfaces of fine rods. To drill the micro-hole, kerosene and pure water is used as a dielectric. From the experiment, water is superior to kerosene with respect to surface roughness of inlet and outlet of hole and machined surface as well as electrode wear. However, due to the electrochemical reaction of water, small pits are remained on the workpiece surface.

A Study on the Risk Reduction Method for Liquid Rocket Test Facility (액체로켓 시험설비에서의 위험감소 방법)

  • Lee Jung-Ho;Kim Yong-Wook;Bershadskiy V. A.;Kang Sun-Il;Cho Sang-Yeon;Oh Seung-Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.120-126
    • /
    • 2005
  • The method of decreasing the ecological risk for the LRE(Liquid Rocket Engine) test is developed, working on the cryogenic oxidizer and the high-boiling fuel(Kerosene). This Method is based on the study that contains a technical solution method and an accident occurrence range for decreasing of accident probability and damage. This paper contains schematic on the all risk circumstance bring to accident, block-diagram for an accident growth process in case of the propellant leakage, technical solution method and risk reduction evaluation method. It will be used to alternative method for the risk reduction of complex technical systems.

Study on Film Cooling Characteristic of a Liquid Rocket Engine using Hydrogen Peroxide/Kerosene (과산화수소/케로신 액체로켓엔진의 막냉각 특성에 관한 연구)

  • Choi, Yu-Ri;Jeon, Jun-Su;Chae, Byoung-Chan;Min, Ji-Hong;Ko, Young-Sung;Kim, Sun-Jin;Kim, Yoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.601-604
    • /
    • 2010
  • An experimental study was carried out to investigate the effect of film cooling in a liquid rocket engine using Hydrogen peroxide/Kerosene as propellants. The heat fluxes were calculated by the measured wall temperatures on the axial direction of thrust chamber for mass flow rate of coolant and different type of film cooling rings. The flow rate of coolant was 0~20 percent of the total propellant.

  • PDF

Cold Flow and Ignition Tests for a 75-tonf Kerosene-Cooled Liquid Rocket Engine Thrust Chamber (75톤급 액체로켓엔진 케로신 냉각 연소실 수류시험 및 점화시험)

  • Kang, Dong-Hyuk;Lim, Byoung-Jik;Ahn, Kyu-Bok;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.25-28
    • /
    • 2010
  • The Cold flow and ignition tests have been performed for a technology demonstration model of 75-tonf liquid rocket engine thrust chamber which was designed and manufactured on the basis of the previous development experience of a 30-tonf liquid rocket engine thrust chamber. The hydrodynamic characteristics of the facility supply pipelines and the filling time of the cooling kerosene were obtained through the cold flow tests. The ignition cyclogram was determinded using the results and the ignition test was successfully carried out. The acquired data and test technique of present ignition test will be used in hot firing tests.

  • PDF

Design and Cold Flow test of a Multi-injector Engine using Hydrogen Peroxide/Kerosene (과산화수소 케로신을 추진제로하는 다중 인젝터 설계 및 수류실험)

  • Kim, Ki-Woo;Jeon, Jun-Su;Park, Jin-Ho;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.95-98
    • /
    • 2010
  • A multi-injector rocket engine using high concentrated hydrogen peroxide and kerosene as the oxidizer and fuel was designed and fabricated. Six coaxial swirl injectors were mounted on the mixing head and flow analysis in the manifold was performed to minimize stagnation and recirculation zones. Finally, uniformity of mass flow rate and spray pattern was evaluated by cold flow tests and the mixing head design process was successfully verified the results.

  • PDF

A Study on Design and Combustion Characteristic of a $H_2O_2$/Kerosene Uni-Injector Rocket Engine (과산화수소/케로신 단일 인젝터 설계 및 혼합비에 따른 연소특성)

  • Kim, Bo-Yeon;Lee, Yang-Suk;Kim, Geun-Chul;Ko, Yung-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.81-84
    • /
    • 2010
  • In this study, a coaxial swirl injector using hydrogen peroxide and kerosene was designed and combustion performance tests were performed to evaluate combustion characteristic according to mixture ratio. Spray characteristic of the injector was verified by cold flow test and combustion performances according to mixture ratio were evaluated by the characteristic exhaust velocity. Test results showed that the combustion efficiency at the design condition was about 95% and the pressure fluctuation was very small.

  • PDF