• Title/Summary/Keyword: kerosene

Search Result 563, Processing Time 0.019 seconds

Novel Ramjet Propulsion System with H2O2-Kerosene Rocket as an Initial Accelerator (H2O2-케로신 로켓을 초기 가속장치로 갖는 새로운 램젯 추진기관)

  • Park, Geun-Hong;Lim, Ha-Young;Kwon, Se-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.491-496
    • /
    • 2008
  • New concept ramjet propulsion system with liquid bipropellant rocket using "Green Propellant" hydrogen peroxide for launch stage is proposed. In this novel concept, hydrogen peroxide gas generator produces hot oxygen at launch stage and kerosene injects to this jet in combustor. For basic study of this new concept ramjet system, investigation of auto-ignition characteristics and combustion of decomposed hydrogen peroxide and kerosene was conducted. In various test cases, auto-ignition and stable combustion was verified. The combustion temperature of 400°C and Fuel/Oxidizer mixture ratio of 0.6 were the limit of auto ignition. Through the experiment results, the possibility of novel concept combined propulsion system using hydrogen peroxide gas generator is ascertained.

The Identification of Spilled Oil by the Pattern of Alkyl PAH

  • Bae, Il-Sang;Shin, Ho-Sang;Lee, Jae-Young;Jung, Kweon;Lee, Yeon-soo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.289-292
    • /
    • 2004
  • In order to identify the origin and nature of the spilled oil in the potential source, we analyzed the pattern of alkyi PAM(Polynuclear Aromatic Hydrocarbons) in fuel standard and environmental samples. Alkyl PAM patterns are used for fuel-type identification in weathered environmental samples. Detection of alkyl PAH was achieved by operation CC/MS in the SIM mode. We chose ions of naphthalene(m/z 128), C1-naphthalene(m/z 142), C2-naphthalene(m/z 156), C3-naphthalene(m/z 170), C4-naphthalene(m/z 184) for the comparison of this pattern according to the type of fuel. We analyzed tile pattern of alkyl PAH in neat gasoline, kerosene, diesel, and JP-8, and in groundwater samples which were collected in monitoring wells. The distribution map of alkyl-naphthalene shows different patterns among four different fuel types (gasoline, kerosene, diesel, and JP-8). Particularly, tile distribution map of kerosene and JP-8 is found to be of value in identifying fuel type in that the difference is clear. Therefore distribution patterns of alkyl-PAH compounds provide another useful tool for fuel-type identification of petroleum fuels.

  • PDF

A Study on the Specific Fuel Consumption of the Farm Kerosene Engines (농업용 석유기관의 연료소비율에 관한 연구)

  • 신건성
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.2
    • /
    • pp.3763-3771
    • /
    • 1975
  • This study was attempted to investigate the changes of specific fuel consumption, compression pressure and power output, consequently to obtain basic data on farm kerosene engine. The samples which are used in this study are a 4 cycle water cooled korosene engine for the use of K6-CT83 power tiller and a 4 cycle air-cooled kerosene engine for the use of G5L-3A water pump. The Korean Industrial Standards (K.S)KS-B 6002 "Test code of small internal combustion engine" was referred in carrying out this study, and its results are as follows. 1. According to load increasing, the speific fuel consumption of the engines generally decreases, however, in case of 10% over-loading it increases. 2. As a result of full load consecutive operation, according to passing of operating time, the amount of wear generally increases, consequently the speific fuel consumption also increases, and inversly the compression pressure decreases. 3. The changes of specific fuel consumption and compression pressure were closely related with time of piston ring exchange, and periodically about 100 hours the engines show the increase of specific fuel consumption and the decrease of compression pressure. 4. After about 300 hours, although the engine had new piston rings, the specific fuel consumption increase, consequently the engine needs boring. In actual use, it is impossible to operate consecutively on full load, therefore the boring time of engine is expected to come later.

  • PDF

Development and Verification Test of a Bi-propellant Thruster Using Hydrogen Peroxide and Kerosene

  • Yu, I Sang;Kim, Tae Woan;Ko, Young Sung;Jeon, Jun Su;Kim, Sun Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.270-278
    • /
    • 2017
  • This paper describes development procedure and verification test results of a bi-propellant thruster using hydrogen peroxide and kerosene. The design thrust of the thruster is about 500 N and six swirl type coaxial injectors were used. The passage type manifolds were employed for the injector head to reduce the response time. The passage was designed to minimize stagnation points and recirculation region to ensure uniform flow distribution and sufficient cooling performance through flow analysis using Fluent. A catalytic igniter using hydrogen peroxide was installed at the center of the injector head. The propellant feeding and spray characteristics were confirmed by hydraulic tests. Combustion tests were performed on design and off-design points to analyze combustion characteristics under various mixture ratio conditions. The combustion test results show that combustion efficiency was over 95 % and chamber pressure fluctuation were less than 1.5 % under all test conditions.

Development Status of a Turbopump for 30-ton Thrust Level of Engine (30톤급 액체로켓엔진용 터보펌프 개발현황)

  • Kim Jin-Han;Hong Soon-Sam;Jeong Eun-Hwan;Choi Chang-Ho;Jeon Seong-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.375-383
    • /
    • 2005
  • The present paper describes the first development of a LOX/kerosene type turbopump in Korea. The liquid rocket engine, that the turbopump can be applied to, has a 30-ton(metric) level of vacuum thrust and employs a gas generator cycle. The turbopump consists of two single-stage centrifugal pumps, that is, LOX and kerosene pumps, and one single-stage impulse turbine. Inter-propellant seal(IPS) is located between the LOX pump and the kerosene pump to avoid any interaction between the propellants. A series of component and TPU(Turbopump Unit) test has been completed in the level of simulant propellants and ready for hot firing tests.

  • PDF

Numerical analysis on curtain cooling in Liquid Rocket Engine of 10tf-thrust Level using Kerosene as a Fuel (케로신을 연료로 하는 10톤급 액체로켓엔진의 막 냉각에 관한 해석적 연구)

  • 남궁혁준;한풍규;조원국
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.78-82
    • /
    • 2003
  • The cooling mechanism for a regenerative cooling liquid rocket engine of 10tf-thrust using kerosene as a fuel was studied from the viewpoint of curtain cooling. Based on the concept of a highly-stratified gas flow in the combustion chamber, the cross section of the combustion chamber was spilt into 2 independent parts, core and exterior part. Additional fuel is injected into the exterior section and gas temperature can be reduced in the exterior section. Consequently, the heat flux into the coolant and wall temperature are reduced and the thermal stability of a liquid rocket engine could be improved.

  • PDF

A Study of Design of $H_2O_2$/Kerosene Ignition Injector and Spray Characteristics (과산화수소/케로신 점화용 분사기 설계 및 분무특성에 관한 연구)

  • Kim, Bo-Yeon;Hwang, Oh-Sik;Lee, Yang-Suk;Ko, Young-Seong;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.37-40
    • /
    • 2009
  • This study was performed to design of $H_2O_2$/Kerosene catalyst ignition injector and cold flow test to measure the mass flow rate and spray angle. Mass flow rate and spray angle were measured by designed injector through cold flow test. Result of test kerosene mass flow rate was measured 12.88 g/s and 40 deg of spray angle at pressure drop 3 bar as same as design point. And hydrogen peroxide was measured 94.39 g/s at pressure drop 1 bar smaller than design point.

  • PDF

Study for Design and Performance Characteristics of Small Bipropellant Thruster using $H_2O_2$/Kerosene (과산화수소/케로신 소형 이원추진제 추력기의 설계 및 성능특성에 관한 연구)

  • Kim, Jung-Hoon;Lee, Jae-Won;Jeon, Young-Jin;Chae, Byoung-Chan;Jeon, Jun-Su;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.41-45
    • /
    • 2009
  • The small-sized bi-propellant thruster using a high concentrated hydrogen peroxide and kerosene as the oxidizer and fuel was designed and fabricated in this study. The water cold-flow test was performed to verify the performance characteristics of the injector. The mixing head assembly used in this model thruster was designed as a structure to combine igniter, injectors and film cooling, which are capable of regulating each mass flowrate. This maximize the experimental verification and efficiency of the design optimization. Finally, the mass flowrate and spray pattern of injector were evaluated by the hydraulic test. Therefore, the design validity of the mixing head was verified.

  • PDF

A Study of Combustion Test Facility for LRE Using Hydrogen peroxide and Kerosene as Propellant (과산화수소/케로신 액체로켓엔진의 연소시험 설비 개발에 관한 연구)

  • Choi, Yu-Ri;Jeon, Jun-Su;Kim, Young-Mun;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.29-32
    • /
    • 2009
  • This study is for development combustion test facility of liquid rocket engine system using hydrogen peroxide/kerosene as propellent. For this new facility, we construct thrust measure system, propellent supply system, control and data acquisition system. To perform 200N liquid rocket engine combustion test, operation scenario and sequence were designed. Result of combustion test propellents were supplied to engine stably and confirm of development combustion test facility very well.

  • PDF

Re-dispersion Characteristics of Waster-Based Magnetic Fluids Using Oleic Acid and Saturated Fatty Acid $(C_9-C_11)$ System - Preparation and Redispersion Characteristics of Water-Based Magnetic Fluid With the Synthesized Magnetite(3) (오레인산-포화지방산$(C_9-C_11)$으로 제조한 수상자성유체의 재분산성 -합성 마그네타이트에 의한 수상자성유체의 제조 및 재분산 특성에 관한 연구(3))

  • Kim, Mahn;Oh, Jae-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.723-730
    • /
    • 1994
  • Stable aqueous dispersion of magnetite colloid was obtained by allowing a fatty acid, such as nonanoic acid, decanoic acid and undecanoic acid, dissociated with NH4OH solution to adsorb on the monomolecular adsorption of oleate. To obtain a stable dispersion, added amounts of sodium oleate and nonanoic acid for magnetite 20g were more than 2.63$\times$10-2 mol and 0.04 mol respectively. In this colloid, good dispersions of magnetite which is sterically stabilized in aqueous system were achieved about pH 7.7. Water-based magnetic fluids using in this study were able to redisperse to water-based magnetic fluids by adding NH4OH solution to dried water-based magnetic fluid powders. Changing a magnetic fluid carrier such as kerosene was also attemped by adding kerosene to dried water-based magnetic fluid powders. In this study, we can obtain a kerosene-based magnetic fluids using drying process.

  • PDF