본 논문은 딥러닝 사람 자세 추정 모델이 사람의 관절 키포인트를 예측하는데 관절의 2차원 면적에 의해 키포인트별 𝜎, 즉, 표준 편차를 가지는 가우시안 커널(Gaussian Kernel)을 예측하는 방법을 제안한다. 각 관절 키포인트에 대해 다른 𝜎를 가지는 정답 히트맵(Ground Truth Heatmap)과 제안한 Gaussian Mixture Block를 모델에 추가해서 관절의 크기를 맞는 히트맵을 예측한다.
의사 샘플 신경망은 학습 샘플의 수가 적은 경우 학습된 신경망이 국부 최적해에 빠져 성능이 저하되는 것을 보완하기 위해 기존 샘플들로부터 의사 샘플을 생성하고 이를 통해 해공간을 평탄화 시킴으로써 학습된 신경망의 성능을 향상시킬 수 있는 신경망의 변형이다. 이는 학습 샘플의 양에 관한 문제로 이 논문에서는 이에 더해 학습 샘플의 질을 향상시킴으로써 학습된 신경망의 성능을 더욱 높일 수 있는 방법을 제시하였다. 잡음이 적게 포함된 전형적인 학습 샘플들만이 주어지고 입력 특징 중 출력과 연관성이 높은 특징만을 사용함으로써 학습된 신경망의 성능을 높일 수 있음은 자명하다. 따라서 이 논문에서는 커널밀도 추정을 통해 비전형적인 학습샘플을 제거하고 입력값이 출력값에 미치는 영향을 나타내는 연관성 척도를 사용하여 연관성이 적은 특징을 제거함으로써 의사 샘플 신경망의 성능을 향상시킬 수 있음을 보였다. 제시한 방법의 유효성은 토석류 데이터를 이용한 실험을 통해 확인할 수 있다.
OC-SVM(One Class Support Vector Machine)은 주어진 전체 데이터의 분포를 측정하는 대신에. 데이터 분포의 서포트(support)를 측정하는 기술로서 주어진 데이터를 가장 잘 설명할 수 있는 최적의 서포트 벡터(support vector)를 구하는 기술이다. OC-SVM은 데이터 분포의 표현에 아주 뛰어난 접근 방법이지만, 사람의 주관적인 중요도를 반영하는 것은 힘들다. 본 논문에서는 각 데이터에 퍼지 맴버쉽(fuzzy membership)을 적용하여 기존의 OC-SVM에 사용자의 주관적인 중요도를 표현할 수 있는 FOC-SVM(Fuzzy One class Support Vector Machine)을 유도 하였다. FOC-SVM은 데이터들을 동등하게 다루는 것이 아니라, 데이터 객체의 중요도에 따라 데이터를 다룬다. 즉, 덜 중요한 데이터의 특징 벡터는 OC-SVM의 처리과정에 덜 기여하도록 하기 위하여, 객체의 중요도에 따라 특징 벡터의 크기를 조정하였다. 이를 증명하기 위하여 가상의 데이터를 가지고 실험을 하였고, 실험 결과는 예측된 결과를 보여 주었다.
신뢰성 해석 및 신뢰성기반 최적설계는 불확실성을 고려한 확률변수를 입력 값으로 요구하며, 확률변수는 모수적 비모수적 통계모델링 방법을 사용하여 확률분포함수의 형태로 정량화 된다. 신뢰성 해석과 같은 통계적 해석은 입력되는 확률분포함수의 특성이 결과값에 영향을 미치게 되며, 확률분포함수는 통계모델링 방법에 따라 다른 형태를 가지게 된다. 본 연구에서는 모수적 통계모델링 방법인 순차적 통계모델링 방법과 비모수적 방법인 커널밀도추정을 사용하여 데이터의 개수에 따른 통계모델링의 결과를 분석하였다. 또한 수치예제를 통해 두 가지 기법에 따른 신뢰성 해석의 결과를 분석하였고, 데이터의 개수에 따른 적절한 기법을 제안하였다.
본 연구에서는 항공레이저 스캐닝 데이터를 이용하여 기존의 최소건물면적등과 같은 경험적 변수의 설정 없이, 원시 라이다 자료의 국지적 공간상관(local spatial association) 특성을 이용하여 건물을 추출하는 효율적인 방법을 개발하고, 이를 실측데이터에 적용하여 개발된 방법의 성능을 평가하는데 목적이 있다. 이를 위하여 연구지역 내에서 발생할 수 있는 공간상관의 국지적 변이(local variations)를 고려하는 공간통계분석기법인 LISA(Local Indicatiors of Spatial Association) 통계치를 이용하였다 전처리 과정으로 LISA 통계치의 유의성 검정 과정을 통하여 공간이상치를 검출하였고, 검출된 이상치를 kernel estimation통해 주변의 특성을 반영한 값으로 보간하였다. Moran Scatterplot의 사분면을 기준으로 건물은 물론 동시에 건물의 외곽선 정보까지 추출할 수 있다. 실험결과 본 연구에서 제안한 방법은 건물을 자동으로 추출할 수 있는 가능성을 제시하였다.
딥러닝 기반의 이미지 세그멘테이션은 차선 인식을 위해 널리 사용되는 접근 방식 중 하나로, 차선의 키포인트를 추출하기 위한 후처리 과정이 필요하다. 일반적으로 키포인트는 사용자가 지정한 임계값을 기준으로 추출한다. 하지만 최적의 임계값을 찾는 과정은 큰 노력을 요구하며, 데이터 세트(또는 이미지)마다 최적의 값이 다를 수 있다. 본 연구는 사용자의 직접 임계값 지정 대신, 대상의 이미지에 맞추어 적절한 임계값을 자동으로 설정하는 키포인트 추출 알고리즘을 제안한다. 본 논문의 키포인트 추출 알고리즘은 차선 영역과 배경의 명확한 구분을 위해 줄 단위 정규화를 사용한다. 그리고 커널 밀도 추정을 사용하여, 각 줄에서 각 차선의 키포인트를 추출한다. 제안하는 알고리즘은 TuSimple과 CULane 데이터 세트에 적용되었으며, 고정된 임계값 사용 대비 정확도 및 거리오차 측면에서 1.80%p와 17.27% 향상된 결과를 얻는 것을 확인하였다.
Journal of the Korean Data and Information Science Society
/
제25권1호
/
pp.87-95
/
2014
분산함수가 불연속인 경우 Kang과 Huh (2006)는 잔차제곱을 이용한 Nadaraya-Watson 추정량으로 분산함수를 추정하였다. 음의 실수 값도 가질 수 있는 로그분산함수를 추정 대상으로 하여, 오차제곱의 분포를 ${\chi}^2$-분포로 가정하고 국소선형적합을 이용한 불연속 로그분산함수의 추정이 Huh(2013)에 의해 연구되었다. Chen 등 (2009)은 연속인 로그분산함수를 로그잔차제곱을 이용한 국소선형적합으로 추정하였다. 본 연구는 Chen 등의 추정법을 이용하여 불연속인 로그분산함수의 추정량을 제시하였다. 기존의 제안된 불연속인 로그분산함수의 추정량들과 제안된 추정량을 모의실험을 통하여 비교연구하고자 한다. 한편, 로그분산함수가 연속이지만 그 미분된 함수가 불연속일 경우, Huh (2013)의 방법과 제안된 방법으로 적합된 국소선형의 기울기를 이용하여 불연속인 미분된 로그 분산함수의 추정량을 제시하고자 한다. 이들 추정량의 비교 연구 또한 모의실험을 통하여 제시하고자 한다.
Lee, Kyoung-Sun;Imada, Shinsuke;Watanabe, Kyoko;Bamba, Yumi;Brooks, David H.
천문학회보
/
제41권2호
/
pp.67.3-68
/
2016
An X1.6 flare occurred in AR 12192 on 2014 October 22 around 14:06 UT and was observed by Hinode, IRIS, SDO and RHESSI. We analyze a bright kernel which produces a white light flare (WLF) with continuum enhancement and a hard X-ray (HXR) peak. Taking advantage of the spectroscopic observations of IRIS and EIS, we measure the temporal variation of the plasma properties in the bright kernel in the chromosphere and corona. We found that explosive evaporation was observed when the WLF occurred, even though the intensity enhancement in hotter lines is quite weak. The temporal correlation of the WLF, HXR peak, and evaporation flows indicates that the WLF was produced by accelerated electrons. To understand the white light emission processes, we calculated the deposited energy flux from the non-thermal electrons observed by RHESSI and compared it to the dissipated energy estimated from the chromospheric lines (Mg II triplet) observed by IRIS. The deposited energy flux from the non-thermal electrons is about $3.1{\times}10^{10}erg\;cm^{-2}s^{-1}$ when we assume a cut-off energy of 20 keV. The estimated energy flux from the temperature changes in the chromosphere measured from the Mg II subordinate line is about $4.6-6.7{\times}10^9erg\;cm^{-2}s^{-1}$, 15 - 22 % of the deposited energy. By comparison of these estimated energy fluxes we conclude that the continuum enhancement was directly produced by the non-thermal electrons.
본 논문은 입력 이미지 블록의 클래스 조건부 확률 밀도 함수의 커널 추정에 기반한 공간 영역에서의 다중초점 이미지 융합 기법을 제안한다. 이미지 융합 문제를 시험 패턴으로부터 추정된 유사 밀도 함수에 의해 사후 클래스 확률, P($w_{i}{\mid}B_{ikl}$),을 계산하는 분류 임무로 접근하였다. C개의 입력 이미지 $I_{i}$에 대하여 제안한 방법은 i 클래스 $w_{i}$를 정의하고 베이즈 결정 원리에 기초하여 판별 함수를 최대화하는 PxQ 블록 $B_{ikl}$의 집합에 의해 표현되는 결정 지도로 부터 융합 이미지 Z(k,l)를 형성한다. 출력 화질의 척도로서 RMSE 와 상호 정보량인 MI를 사용하여 제안한 기법의 성능이 평가되었다. 커널 함수의 폭 ${\sigma}$ 도 변화시키고, 다른 종류의 커널과 블록 크기를 변화시켜 가며 성능평가를 수행하였다. 제안한 가법은 C=2 와 C=3에 대하여 시험하였고 시험 결과는 좋은 성능을 보였다.
본 논문에서는 촬영 시 발생하는 블러 현상을 효율적으로 제거하기 위해 IMU 센서와 노출시간이 길고, 짧은 두 영상을 이용한 비균일 디블러 알고리즘을 제안한다. 종래 센서 정보를 이용한 블러 커널 추정 기법들은 센서 정보의 한계로 인해 성능이 만족스럽지 못하다. 그 한계를 극복하기 위해 우리는 노출시간이 서로 다른 여러 영상들을 이용한 커널 개선 과정을 제안하여, 추정된 커널의 정확도를 향상시킨다. 또한 종래 비균일 디블러 기법들이 블러 커널이 커질수록 심한 화질 열화를 겪는 문제점을 해결하기 위해 본 논문은 호모그래피 기반 잔여 디콘볼루션을 제안하여 디콘볼루션 과정에서 발생하는 링형 현상과 같은 화질 열화를 최소화한다. 실험 결과를 통해 제안 알고리즘의 화질이 기존 기법에 비해 주관적/객관적으로 현저하게 우수함을 볼 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.