• Title/Summary/Keyword: kernel distribution

Search Result 260, Processing Time 0.028 seconds

Health monitoring of pedestrian truss bridges using cone-shaped kernel distribution

  • Ahmadi, Hamid Reza;Anvari, Diana
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.699-709
    • /
    • 2018
  • With increasing traffic volumes and rising vehicle traffic, especially in cities, the number of pedestrian bridges has also increased significantly. Like all other structures, pedestrian bridges also suffer damage. In order to increase the safety of pedestrians, it is necessary to identify existing damage and to repair them to ensure the safety of the bridge structures. Owing to the shortcomings of local methods in identifying damage and in order to enhance the reliability of detection and identification of structural faults, signal methods have seen significant development in recent years. In this research, a new methodology, based on cone-shaped kernel distribution with a new damage index, has been used for damage detection in pedestrian truss bridges. To evaluate the proposed method, the numerical models of the Warren Type steel truss and the Arregar steel footbridge were used. Based on the results, the proposed method and damage index identified the damage and determined its location with a high degree of precision. Given the ease of use, the proposed method can be used to identify faults in pedestrian bridges.

Estimation and Comparative Analysis on the Distribution Functions of Air and Water Temperatures in Korean Coastal Seas (우리나라 연안의 기온과 수온 분포함수 추정 및 비교평가)

  • Cho, Hong-Yeon;Jeong, Shin-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.3
    • /
    • pp.171-176
    • /
    • 2016
  • The distribution shapes of air and water temperatures are basic and essential information, which determine the frequency patterns of their occurrence. It is also very useful to understand the changes in long-term air and water temperatures with respect to climate change. The typical distribution shapes of air and water temperatures cannot be well fitted using widely used/accepted normal distributions because their shapes show multimodal distributions. In this study, Gaussian mixture distributions and kernel distributions are suggested as the more suitable models to fit their distribution shapes. Based on the results, the tail shape exhibits different patterns. The tail is long in higher temperature regions of water temperature distribution and in lower temperature regions of air temperature distribution. These types of shape comparisons can be useful to identify the patterns of long-term air and water temperature changes and the relationship between air and water temperatures. It is nearly impossible to identify change patterns using only mean-temperatures and normal distributions.

A Decision Support Model for Sustainable Collaboration Level on Supply Chain Management using Support Vector Machines (Support Vector Machines을 이용한 공급사슬관리의 지속적 협업 수준에 대한 의사결정모델)

  • Lim, Se-Hun
    • Journal of Distribution Research
    • /
    • v.10 no.3
    • /
    • pp.1-14
    • /
    • 2005
  • It is important to control performance and a Sustainable Collaboration (SC) for the successful Supply Chain Management (SCM). This research developed a control model which analyzed SCM performances based on a Balanced Scorecard (ESC) and an SC using Support Vector Machine (SVM). 108 specialists of an SCM completed the questionnaires. We analyzed experimental data set using SVM. This research compared the forecasting accuracy of an SCMSC through four types of SVM kernels: (1) linear, (2) polynomial (3) Radial Basis Function (REF), and (4) sigmoid kernel (linear > RBF > Sigmoid > Polynomial). Then, this study compares the prediction performance of SVM linear kernel with Artificial Neural Network. (ANN). The research findings show that using SVM linear kernel to forecast an SCMSC is the most outstanding. Thus SVM linear kernel provides a promising alternative to an SC control level. A company which pursues an SCM can use the information of an SC in the SVM model.

  • PDF

Estimating multiplicative competitive interaction model using kernel machine technique

  • Shim, Joo-Yong;Kim, Mal-Suk;Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.825-832
    • /
    • 2012
  • We propose a novel way of forecasting the market shares of several brands simultaneously in a multiplicative competitive interaction model, which uses kernel regression technique incorporated with kernel machine technique applied in support vector machines and other machine learning techniques. Traditionally, the estimations of the market share attraction model are performed via a maximum likelihood estimation procedure under the assumption that the data are drawn from a normal distribution. The proposed method is shown to be a good candidate for forecasting method of the market share attraction model when normal distribution is not assumed. We apply the proposed method to forecast the market shares of 4 Korean car brands simultaneously and represent better performances than maximum likelihood estimation procedure.

ASYMPTOTIC APPROXIMATION OF KERNEL-TYPE ESTIMATORS WITH ITS APPLICATION

  • Kim, Sung-Kyun;Kim, Sung-Lai;Jang, Yu-Seon
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.147-158
    • /
    • 2004
  • Sufficient conditions are given under which a generalized class of kernel-type estimators allows asymptotic approximation on the modulus of continuity. This generalized class includes sample distribution function, kernel-type estimator of density function, and an estimator that may apply to the censored case. In addition, an application is given to asymptotic normality of recursive density estimators of density function at an unknown point.

Study on the Influence of Mixing Effect to the Measurement of Particle Size Distribution using DMA and CPC (혼합효과가 DMA와 CPC를 이용한 입자분포 측정에 미치는 영향에 관한 연구)

  • Lee, Youn-Soo;Ahn, Kang-Ho;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.326-333
    • /
    • 2003
  • In the measurement using DMA and CPC in series, there is some time delay for particles classified in DMA to detect in CPC. During this time, the DMA time-response changes due to the velocity profile of sampling tube and the diffusion of particles in the volume that exists between the DMA exit and the detector of ultra-fine CPC. This is called mixing effect. In the accelerated measurement methods like the TSI -SMPS, the size distribution is obtained from the correlation between the time-varying electrical potential of the DMA and the corresponding particle concentrations sampled in DMA. If the DMA time -response changes during this delay time, this can cause the error of a size distribution measured by this accelerated technique. The kernel function considering this mixing effect using the residence time distribution is proposed by Russell et al. In this study, we obtained a size distribution using this kernel to compare to the result obtained by the commercial accelerated measurement system, TSI -SMPS for verification and considered the errors that result from the mixing effect with the geometric mean diameters of originally sampled particles, using virtually calculated responses obtained with this kernel as input data.

Kernel Inference on the Inverse Weibull Distribution

  • Maswadah, M.
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.503-512
    • /
    • 2006
  • In this paper, the Inverse Weibull distribution parameters have been estimated using a new estimation technique based on the non-parametric kernel density function that introduced as an alternative and reliable technique for estimation in life testing models. This technique will require bootstrapping from a set of sample observations for constructing the density functions of pivotal quantities and thus the confidence intervals for the distribution parameters. The performances of this technique have been studied comparing to the conditional inference on the basis of the mean lengths and the covering percentage of the confidence intervals, via Monte Carlo simulations. The simulation results indicated the robustness of the proposed method that yield reasonably accurate inferences even with fewer bootstrap replications and it is easy to be used than the conditional approach. Finally, a numerical example is given to illustrate the densities and the inferential methods developed in this paper.

Learning Free Energy Kernel for Image Retrieval

  • Wang, Cungang;Wang, Bin;Zheng, Liping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2895-2912
    • /
    • 2014
  • Content-based image retrieval has been the most important technique for managing huge amount of images. The fundamental yet highly challenging problem in this field is how to measure the content-level similarity based on the low-level image features. The primary difficulties lie in the great variance within images, e.g. background, illumination, viewpoint and pose. Intuitively, an ideal similarity measure should be able to adapt the data distribution, discover and highlight the content-level information, and be robust to those variances. Motivated by these observations, we in this paper propose a probabilistic similarity learning approach. We first model the distribution of low-level image features and derive the free energy kernel (FEK), i.e., similarity measure, based on the distribution. Then, we propose a learning approach for the derived kernel, under the criterion that the kernel outputs high similarity for those images sharing the same class labels and output low similarity for those without the same label. The advantages of the proposed approach, in comparison with previous approaches, are threefold. (1) With the ability inherited from probabilistic models, the similarity measure can well adapt to data distribution. (2) Benefitting from the content-level hidden variables within the probabilistic models, the similarity measure is able to capture content-level cues. (3) It fully exploits class label in the supervised learning procedure. The proposed approach is extensively evaluated on two well-known databases. It achieves highly competitive performance on most experiments, which validates its advantages.

Centroid Neural Network with Bhattacharyya Kernel (Bhattacharyya 커널을 적용한 Centroid Neural Network)

  • Lee, Song-Jae;Park, Dong-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.861-866
    • /
    • 2007
  • A clustering algorithm for Gaussian Probability Distribution Function (GPDF) data called Centroid Neural Network with a Bhattacharyya Kernel (BK-CNN) is proposed in this paper. The proposed BK-CNN is based on the unsupervised competitive Centroid Neural Network (CNN) and employs a kernel method for data projection. The kernel method adopted in the proposed BK-CNN is used to project data from the low dimensional input feature space into higher dimensional feature space so as the nonlinear problems associated with input space can be solved linearly in the feature space. In order to cluster the GPDF data, the Bhattacharyya kernel is used to measure the distance between two probability distributions for data projection. With the incorporation of the kernel method, the proposed BK-CNN is capable of dealing with nonlinear separation boundaries and can successfully allocate more code vector in the region that GPDF data are densely distributed. When applied to GPDF data in an image classification probleml, the experiment results show that the proposed BK-CNN algorithm gives 1.7%-4.3% improvements in average classification accuracy over other conventional algorithm such as k-means, Self-Organizing Map (SOM) and CNN algorithms with a Bhattacharyya distance, classed as Bk-Means, B-SOM, B-CNN algorithms.

Selection of Spatial Regression Model Using Point Pattern Analysis

  • Shin, Hyun Su;Lee, Sang-Kyeong;Lee, Byoungkil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.225-231
    • /
    • 2014
  • When a spatial regression model that uses kernel density values as a dependent variable is applied to retail business data, a unique model cannot be selected because kernel density values change following kernel bandwidths. To overcome this problem, this paper suggests how to use the point pattern analysis, especially the L-index to select a unique spatial regression model. In this study, kernel density values of retail business are computed by the bandwidth, the distance of the maximum L-index and used as the dependent variable of spatial regression model. To test this procedure, we apply it to meeting room business data in Seoul, Korea. As a result, a spatial error model (SEM) is selected between two popular spatial regression models, a spatial lag model and a spatial error model. Also, a unique SEM based on the real distribution of retail business is selected. We confirm that there is a trade-off between the goodness of fit of the SEM and the real distribution of meeting room business over the bandwidth of maximum L-index.