• Title/Summary/Keyword: kelvin-chain

Search Result 7, Processing Time 0.111 seconds

Continuous relaxation spectrum for the numerical analysis of concrete creep

  • Zi, Goang-Seup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.466-471
    • /
    • 2004
  • Efficient numerical finite element analysis of creeping concrete structures requires the use Kelvin or Maxwell chain model, which is most conveniently identified from a continuous retardation or relaxation spectrum, the spectrum in turn being determined from the given compliance or relaxation function. The method of doing that within the context of solidification theory for creep with aging was previously worked out by Bazant and Xi, but only for the case of a continuous retardation spectrum based on Kelvin chain. The present paper is motivated by the need to incorporate concrete creep into the recently published microplane model M4 for nonlinear triaxial behavior of concrete, including tensile fracturing and behavior under compression. In that context. the Maxwell chain is more effective than Kelvin chain. because of the kinematic constraint of the microplanes used in M4. Determination of the continuous relaxation spectrum for Maxwell chain. based on the solidification theory, is outlined and numerical examples are presented.

  • PDF

A Study on the Neumann-Kelvin Problem of the Wave Resistance (조파저항에서의 Neumann-Kelvin 문제에 대한 연구)

  • 김인철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.2
    • /
    • pp.131-136
    • /
    • 1985
  • The calculation of the resulting fluid motion is an important problem of ship hydrodynamics. For a partially immersed body the condition of constant pressure at the free surface can be linearized. The resulting linear boundary-value problem for the velocity potential is the Neumann-Kelvin problem. The two-dimensional Neumann-Kelvin problem is studied for the half-immersed circular cylinder by Ursell. Maruo introduced a slender body approach to simplify the Neumann-Kelvin problem in such a way that the integral equation which determines the singularity distribution over the hull surface can be solved by a marching procedure of step by step integration starting at bow. In the present pater for the two-dimensional Neumann-Kelvin problem, it has been suggested that any solution of the problem must have singularities in the corners between the body surface and free surface. There can be infinitely many solutions depending on the singularities in the coroners.

  • PDF

Modelling creep of high strength concrete

  • Dias-da-Costa, D.;Julio, E.N.B.S.
    • Computers and Concrete
    • /
    • v.7 no.6
    • /
    • pp.533-547
    • /
    • 2010
  • Recent developments in concrete mixing made possible the production of concretes with high compressive strength showing, simultaneously, high workability. These concretes also present high strengths at young ages, allowing the application of loads sooner. It is of fundamental importance to verify if creep models developed for current concrete still apply to these new concretes. First, a FEM-based software was adopted to test available creep models, most used for normal strength concrete, considering examples with known analytical results. Several limitations were registered, resulting in an incorrect simulation of three-dimensional creep. Afterwards, it was implemented a Kelvin-chain algorithm allowing the use of a chosen number of elements, which adequately simulated the adopted examples. From the comparison between numerical and experimental results, it was concluded that the adopted algorithm can be used to model creep of high strength concrete, if the material properties are previously experimentally assessed.

Time dependent finite element analysis of steel-concrete composite beams considering partial interaction

  • Dias, Maiga M.;Tamayo, Jorge L.P.;Morsch, Inacio B.;Awruch, Armando M.
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.687-707
    • /
    • 2015
  • A finite element computer code for short-term analysis of steel-concrete composite structures is extended to study long-term effects under service loads, in the present work. Long-term effects are important in engineering design because they influence stress and strain distribution of the structural system and therefore contribute to the increment of deflections in these structures. For creep analysis, a rheological model based on a Kelvin chain, with elements placed in series, was employed. The parameters of the Kelvin chain were obtained using Dirichlet series. Creep and shrinkage models, proposed by the CEB FIP 90, were used. The shear-lag phenomenon that takes place at the concrete slab is usually neglected or not properly taken into account in the formulation of beam-column finite elements. Therefore, in this work, a three-dimensional numerical model based on the assemblage of shell finite elements for representing the steel beam and the concrete slab is used. Stud shear connectors are represented for special beam-column elements to simulate the partial interaction at the slab-beam interface. The two-dimensional representation of the concrete slab permits to capture the non-uniform shear stress distribution in the horizontal plane of the slab due to shear-lag phenomenon. The model is validated with experimental results of two full-scale continuous composite beams previously studied by other authors. Results are given in terms of displacements, bending moments and cracking patterns in order to shown the influence of long-term effects in the structural response and also the potentiality of the present numerical code.

Trend of Toxic Nanomaterial Detecting Sensors (독성 나노물질 검출 센서 동향)

  • Jang, Kuewhan;Na, Sungsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.977-984
    • /
    • 2014
  • Nanomaterial have grown from scientific interest to commercial products and the nanomaterial market has grown 19.1 % each year. As the nanomaterial market size increases, it is expected that nanomaterial production will increase and its contamination of outdoor environmental system will also increase in the form of industrial waste. Since most of nanomaterials are known as biologically non-degradable materials, nanomaterials will accumulate in the environment, and this will increase the potential threats to human health along the food chain. Recent studies have investigated the toxicity effect of nanomaterials due to their size, chemical composition and shape. For the development of nanomaterial while taking human health into consideration, a nanomaterial detecting sensor is required. In this paper, we have observed the trend of nanomaterial detecting sensor of mechanical, electrochemical, optical and kelvin probe force microscopy sensors and we believe that this trend will shed the light on the development of real-life nanomaterial detecting sensors.

Effects of Cobalt Ohmic Layer on Contact Resistance (코발트 오믹층의 적용에 의한 콘택저항 변화)

  • 정성희;송오성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.390-396
    • /
    • 2003
  • As the design rule of device continued to shrink, the contact resistance in small contact size became important. Although the conventional TiN/Ti structure as a ohmic layer has been widely used, we propose a new TiN/Co film structure. We characterized a contact resistance by using a chain pattern and a KELVIN pattern, and a leakage current determined by current-voltage measurements. Moreover, the microstructure of TiN/ Ti/ silicide/n$\^$+/ contact was investigated by a cross-sectional transmission electron microscope (TEM). The contact resistance by the Co ohmic layer showed the decrease of 26 % compared to that of a Ti ohmic layer in the chain resistance, and 50 % in KELYIN resistance, respectively. A Co ohmic layer shows enough ohmic behaviors comparable to the Ti ohmic layer, while higher leakage currents in wide area pattern than Ti ohmic layer. We confirmed that an uniform silicide thickness and a good interface roughness were able to be achieved in a CoSi$_2$ Process formed on a n$\^$+/ silicon junction from TEM images.

Three-dimensional Numerical Modeling of Water Temperature and Internal Waves in a Large Stratified Lake (대형 성층 호수의 수온과 내부파의 3차원 수치 모델링)

  • Chung, Se-Woong;Schladow, S. Geoffrey
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.4
    • /
    • pp.367-376
    • /
    • 2015
  • The momentum and kinetic turbulent energy carried by the wind to a stratified lake lead to basin-scale motions, which provide a major driving force for vertical and horizontal mixing. A three-dimensional (3D) hydrodynamic model was applied to Lake Tahoe, located between California and Nevada, USA, to simulate the dominant basin-scale internal waves in the deep lake. The results demonstrated that the model well represents the temporal and vertical variations of water temperature that allows the internal waves to be energized correctly at the basin scale. Both the model and thermistor chain (TC) data identified the presence of Kelvin modes and Poincare mode internal waves. The lake was weakly stratified during the study period, and produced large amplitude (up to 60 m) of internal oscillations after several wind events and partial upwelling near the southwestern lake. The partial upwelling and followed coastal jets could be an important feature of basin-scale internal waves because they can cause re-suspension and horizontal transport of fine particles from nearshore to offshore. The internal wave dynamics can be also associated with the distributions of water quality variables such as dissolved oxygen and nutrients in the lake. Thus, the basin-scale internal waves and horizontal circulation processes need to be accurately modeled for the correct simulation of the dissolved and particulate contaminants, and biogeochemical processes in the lake.