• Title/Summary/Keyword: kelvin element

Search Result 39, Processing Time 0.026 seconds

Numerical simulation by the finite element method of the constructive steps of a precast prestressed segmental bridge

  • Gabriela G., Machado;Americo Campos, Filho;Paula M., Lazzari;Bruna M., Lazzari;Alexandre R., Pacheco
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.163-177
    • /
    • 2023
  • The design of segmental bridges, a structure that typically employs precast prestressed concrete elements and the balanced cantilever construction method for the deck, may demand a highly complex structural analysis for increased precision of the results. This work presents a comprehensive numerical analysis of a 3D finite element model using the software ANSYS, version 21.2, to simulate the constructive deck stages of the New Guaiba Bridge, a structure located in Porto Alegre city, southern Brazil. The materials concrete and steel were considered viscoelastic. The concrete used a Generalized Kelvin model, with subroutines written in FORTRAN and added to the main model through the customization tool UPF (User Programmable Features). The steel prestressing tendons used a Generalized Maxwell model available in ANSYS. The balanced cantilever constructive steps of a span of the New Guaiba Bridge were then numerically simulated to follow the actual constructive sequence of the bridge. A comparison between the results obtained with the numerical model and the actual vertical displacement data monitored during the bridge's construction was carried out, showing a good correlation.

Simulation of Balls' Motion and their Kinetic Energy in a Tumbling Ball Mill (회전 볼밀내에 있어서 볼의 운동 및 운동에저지의 시뮬레이션)

  • Ryu, Ho-Jin
    • Korean Journal of Materials Research
    • /
    • v.7 no.4
    • /
    • pp.339-346
    • /
    • 1997
  • 회전 불밀에 있어서 볼의 운동을 비선형 spring과 비선형 deshpot로 구성된 Kelvin모델을 사용한 DEM(Distinct Element Method;개별요소법)에 의하여 2차원으로 해석하였다. 모델에 있어서 점성계수는 볼과 밀벽사이의 반발실험 데이타로 부터 결정하였다. 각볼의 동적인 운동은 비선형 점탄성과 Newton의 운동법칙를 기초로하여 모사되었다. 밀이 회전하는 동안 볼의 궤적과 동적인 운동은 실제 실험에 의한 밀내에서의 볼의 운동고 잘 일치하였다. 본 연구에서 제안된 모델 시뮬레이션은 회전 볼밀내의 실제의 3차원인 볼의 운동에 대한 해석에 중요한 단서가 될 수 있었다. 볼의 운동고 운동에너지는 회전 볼밀의 속도와 볼의 충진율에 의해 크게 영향을 받았다.

  • PDF

Two-Dimensional Model Simulation of Balls Motion in a Tumbler-Ball Milling of Metal Powder in Relation with Its Ball Filling Ratio (금속분말의 회전 볼밀링에 있어서 볼 충진율에 따른 볼 거동의 2차원 모델 시뮬레이션)

  • 이길근;김성규;김우열
    • Journal of Powder Materials
    • /
    • v.7 no.4
    • /
    • pp.189-196
    • /
    • 2000
  • Effect of ball filling ratio on the behavior of balls motion and their collision characteristic in a tumbler-ball milling of metal powder are investigated by a computer simulation. The discrete element method and the extended Kelvin model composed of nonlinear spring and nonlinear dashpot were employed in the simulation. It can be possible that analysis of the individual balls motion in a three-dimensional actual mill by the two-dimensional model simulation, since the simulated trajectories of ball paths are in relatively good agreement with the actual ones. It knows that the balls motion in the tumbler-ball mill is strongly influenced by the surface conditions of the balls and mill container wall. The energy consumption of the individual balls during impact and the impact frequency of the individual balls increased with an increase in the ball filling ratio and showed maximum values at about 50-60% ball filling ratio, and then decreased.

  • PDF

The Analysis of Stress Behavior in welded interface and interface crack of High Frequency Pressure welding of Dissimilar materials for Fin-Tube (Fin-Tube 이종재의 고주파 압접 접합계면 및 계면균열 응력해석)

  • 김도형;이동진;오환섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.380-385
    • /
    • 2000
  • In this study, geometric shape and crack in welded interface of the air cooled heat exchanger Fin-Tube of Dissimilar Meterials was analysed. The object of study is to understand the behavior of Stress Intensity Factor for fin length, flash thickness, flash length, symmetric and asymmetric cracks of comming from the manufacturing process. Stress Intensity Factor was analysed by BEM. Kelvin's solution was used as a fundamental solution in BEM analysis and stress extrapolation method was used to determine Stress Intensity Factor.

  • PDF

Wave propagation of a functionally graded beam in thermal environments

  • Akbas, Seref Doguscan
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1421-1447
    • /
    • 2015
  • In this paper, the effect of material-temperature dependent on the wave propagation of a cantilever beam composed of functionally graded material (FGM) under the effect of an impact force is investigated. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. Material properties of the beam are temperature-dependent and change in the thickness direction. The Kelvin-Voigt model for the material of the beam is used. The considered problem is investigated within the Euler-Bernoulli beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain and frequency domain by using Newmark average acceleration method. In order to establish the accuracy of the present formulation and results, the comparison study is performed with the published results available in the literature. Good agreement is observed. In the study, the effects of material distributions and temperature rising on the wave propagation of the FGM beam are investigated in detail.

Analysis of Crack Behavior of Brazed Interface in Dissimilar Materials using BEM (이종재 브레이징 계면에서의 균열거동 해석)

  • 오환섭;김시현;김성재;양인수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.91-97
    • /
    • 2002
  • Applications of brazing in the studying fields such as high-speed machining are very increasing in various industry fields. Therefore, applying to the fracture mechanics by numerical analysis method is very important to analyse the crack problem dissimilar materials in brazed interface. In this study, stress intensity factor(SIF) is analysed to investigate crack behavior on the crack tip of dissimilar materials in brazed interface such as a hardmetal and a HSS by two dimensional(2-D) BEM. Kelvin's solution was used as a fundamental solution in BEM analysis and stress extrapolation method was used to determine SIF.

Effect of viscous Damping on the Stability of Beam Resting on an Elastic Foundation Subjected to Dry friction force (점성감쇠가 건성마찰력을 받는 탄성지지 보의 안정성에 미치는 효과)

  • 장탁순;고준빈;류시웅
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.179-185
    • /
    • 2004
  • The effect of viscous damping on stability of beam resting on an elastic foundation subjected to a dry friction force is analytically studied. The beam resting on an elastic foundation subjected to dry friction force is modeled for simplicity into a beam resting on Kelvin-Voigt type foundation subjected to distributed follower load. In particular, the effects of four boundary conditions (clamped-free, clamped-pinned, pinned-pinned, clamped-clamped) on the system stability are considered. The critical value and instability type of columns on the elastic foundation subjected to a distributed follower load is investigated by means of finite element method for four boundary conditions. The elastic foundation modulus, viscous damping coefficient and boundary conditions affect greatly both the instability type and critical load. Also, the increase of damping coefficient raises the critical flutter load (stabilizing effect) but reduces the critical divergence load (destabilizing effect).

Development of a new free wake model using finite vortex element for a horizontal axis wind turbine

  • Shin, Hyungki;Park, Jiwoong;Lee, Soogab
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.17-27
    • /
    • 2017
  • The treatment of rotor wake has been a critical issue in the field of the rotor aerodynamics. This paper presents a new free wake model for the unsteady analysis for a wind turbine. A blade-wake-tower interaction is major source of unsteady aerodynamic loading and noise on the wind turbine. However, this interaction can not be considered in conventional free wake model. Thus, the free wake model named Finite Vortex Element (FVE hereafter) was devised in order to consider the interaction effects. In this new free wake model, the wake-tower interaction was described by dividing one vortex filament into two vortex filaments, when the vortex filament collided with a tower. Each divided vortex filaments were remodeled to make vortex ring and horseshoe vortex to satisfy Kelvin's circulation theorem and Helmholtz's vortex theorem. This model was then used to predict aerodynamic load and wake geometry for the horizontal axis wind turbine. The results of the FVE model were compared with those of the conventional free wake model and the experimental results of SNU wind tunnel test and NREL wind tunnel test under various inflow velocity and yaw condition. The result of the FVE model showed better correlation with experimental data. It was certain that the tower interaction has a strong effect on the unsteady aerodynamic load of blades. Thus, the tower interaction needs to be taken into account for the unsteady load prediction. As a result, this research shows a potential of the FVE for an efficient and versatile numerical tool for unsteady loading analysis of a wind turbine.

Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium

  • Akbas, Seref D.
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1125-1143
    • /
    • 2016
  • Forced vibration analysis of a simple supported viscoelastic nanobeam is studied based on modified couple stress theory (MCST). The nanobeam is excited by a transverse triangular force impulse modulated by a harmonic motion. The elastic medium is considered as Winkler-Pasternak elastic foundation.The damping effect is considered by using the Kelvin-Voigt viscoelastic model. The inclusion of an additional material parameter enables the new beam model to capture the size effect. The new non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is investigated within the Timoshenko beam theory by using finite element method. The effects of the transverse shear deformation and rotary inertia are included according to the Timoshenko beam theory. The obtained system of differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. Numerical results are presented to investigate the influences the material length scale parameter, the parameter of the elastic medium and aspect ratio on the dynamic response of the nanobeam. Also, the difference between the classical beam theory (CBT) and modified couple stress theory is investigated for forced vibration responses of nanobeams.

Wave propagation in a microbeam based on the modified couple stress theory

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.417-431
    • /
    • 2013
  • This paper presents responses of the free end of a cantilever micro beam under the effect of an impact force based on the modified couple stress theory. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. The Kelvin-Voigt model for the material of the beam is used. The considered problem is investigated within the Bernoulli-Euler beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. In the study, the difference of the modified couple stress theory and the classical beam theory is investigated for the wave propagation. A few of the obtained results are compared with the previously published results. The influences of the material length scale parameter on the wave propagation are investigated in detail. It is clearly seen from the results that the classical beam theory based on the modified couple stress theory must be used instead of the classical theory for small values of beam height.