• Title/Summary/Keyword: kNN분류기

Search Result 90, Processing Time 0.025 seconds

A Memory-based Reasoning Algorithm using Adaptive Recursive Partition Averaging Method (적응형 재귀 분할 평균법을 이용한 메모리기반 추론 알고리즘)

  • 이형일;최학윤
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.478-487
    • /
    • 2004
  • We had proposed the RPA(Recursive Partition Averaging) method in order to improve the storage requirement and classification rate of the Memory Based Reasoning. That algorithm worked not bad in many area, however, the major drawbacks of RPA are it's partitioning condition and the way of extracting major patterns. We propose an adaptive RPA algorithm which uses the FPD(feature-based population densimeter) to stop the ARPA partitioning process and produce, instead of RPA's averaged major pattern, optimizing resulting hyperrectangles. The proposed algorithm required only approximately 40% of memory space that is needed in k-NN classifier, and showed a superior classification performance to the RPA. Also, by reducing the number of stored patterns, it showed an excellent results in terms of classification when we compare it to the k-NN.

Optimization of Number of Training Documents in Text Categorization (문헌범주화에서 학습문헌수 최적화에 관한 연구)

  • Shim, Kyung
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.4 s.62
    • /
    • pp.277-294
    • /
    • 2006
  • This paper examines a level of categorization performance in a real-life collection of abstract articles in the fields of science and technology, and tests the optimal size of documents per category in a training set using a kNN classifier. The corpus is built by choosing categories that hold more than 2,556 documents first, and then 2,556 documents per category are randomly selected. It is further divided into eight subsets of different size of training documents : each set is randomly selected to build training documents ranging from 20 documents (Tr-20) to 2,000 documents (Tr-2000) per category. The categorization performances of the 8 subsets are compared. The average performance of the eight subsets is 30% in $F_1$ measure which is relatively poor compared to the findings of previous studies. The experimental results suggest that among the eight subsets the Tr-100 appears to be the most optimal size for training a km classifier In addition, the correctness of subject categories assigned to the training sets is probed by manually reclassifying the training sets in order to support the above conclusion by establishing a relation between and the correctness and categorization performance.

Text Classification based on a Feature Projection Technique with Robustness from Noisy Data (오류 데이타에 강한 자질 투영법 기반의 문서 범주화 기법)

  • 고영중;서정연
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.498-504
    • /
    • 2004
  • This paper presents a new text classifier based on a feature projection technique. In feature projections, training documents are represented as the projections on each feature. A classification process is based on individual feature projections. The final classification is determined by the sum from the individual classification of each feature. In our experiments, the proposed classifier showed high performance. Especially, it have fast execution speed and robustness with noisy data in comparison with k-NN and SVM, which are among the state-of-art text classifiers. Since the algorithm of the proposed classifier is very simple, its implementation and training process can be done very simply. Therefore, it can be a useful classifier in text classification tasks which need fast execution speed, robustness, and high performance.

NN Saturation and FL Deadzone Compensation of Robot Systems (로봇 시스템의 신경망 포화 및 퍼지 데드존 보상)

  • Jang, Jun-Oh
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.187-192
    • /
    • 2008
  • A saturation and deadzone compensator is designed for robot systems using fuzzy logic (FL) and neural network (NN). The classification property of FL system and the function approximation ability of the NN make them the natural candidate for the rejection of errors induced by the saturation and deadzone. The tuning algorithms are given for the fuzzy logic parameters and the NN weights, so that the saturation and deadzone compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded parameter estimates. Formal nonlinear stability proofs are given to show that the tracking error is small. The NN saturation and FL deadzone compensator is simulated on a robot system to show its efficacy.

  • PDF

Performance Comparison of Automatic Classification Using Word Embeddings of Book Titles (단행본 서명의 단어 임베딩에 따른 자동분류의 성능 비교)

  • Yong-Gu Lee
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.4
    • /
    • pp.307-327
    • /
    • 2023
  • To analyze the impact of word embedding on book titles, this study utilized word embedding models (Word2vec, GloVe, fastText) to generate embedding vectors from book titles. These vectors were then used as classification features for automatic classification. The classifier utilized the k-nearest neighbors (kNN) algorithm, with the categories for automatic classification based on the DDC (Dewey Decimal Classification) main class 300 assigned by libraries to books. In the automatic classification experiment applying word embeddings to book titles, the Skip-gram architectures of Word2vec and fastText showed better results in the automatic classification performance of the kNN classifier compared to the TF-IDF features. In the optimization of various hyperparameters across the three models, the Skip-gram architecture of the fastText model demonstrated overall good performance. Specifically, better performance was observed when using hierarchical softmax and larger embedding dimensions as hyperparameters in this model. From a performance perspective, fastText can generate embeddings for substrings or subwords using the n-gram method, which has been shown to increase recall. The Skip-gram architecture of the Word2vec model generally showed good performance at low dimensions(size 300) and with small sizes of negative sampling (3 or 5).

Medical Image Classification and Retrieval Using BoF Feature Histogram with Random Forest Classifier (Random Forest 분류기와 Bag-of-Feature 특징 히스토그램을 이용한 의료영상 자동 분류 및 검색)

  • Son, Jung Eun;Ko, Byoung Chul;Nam, Jae Yeal
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.4
    • /
    • pp.273-280
    • /
    • 2013
  • This paper presents novel OCS-LBP (Oriented Center Symmetric Local Binary Patterns) based on orientation of pixel gradient and image retrieval system based on BoF (Bag-of-Feature) and random forest classifier. Feature vectors extracted from training data are clustered into code book and each feature is transformed new BoF feature using code book. BoF features are applied to random forest for training and random forest having N classes is constructed by combining several decision trees. For testing, the same OCS-LBP feature is extracted from a query image and BoF is applied to trained random forest classifier. In contrast to conventional retrieval system, query image selects similar K-nearest neighbor (K-NN) classes after random forest is performed. Then, Top K similar images are retrieved from database images that are only labeled K-NN classes. Compared with other retrieval algorithms, the proposed method shows both fast processing time and improved retrieval performance.

An Optimizing Hyperrectangle method for Nearest Hyperrectangle Learning (초월평면 최적화를 이용한 최근접 초월평면 학습법의 성능 향상 방법)

  • Lee, Hyeong-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.328-333
    • /
    • 2003
  • NGE (Nested Generalized Exemplars) proposed by Salzberg improved the storage requirement and classification rate of the Memory Based Reasoning. It constructs hyperrectangles during training and performs classification tasks. It worked not bad in many area, however, the major drawback of NGE is constructing hyperrectangles because its hyperrectangle is extended so as to cover the error data and the way of maintaining the feature weight vector. We proposed the OH (Optimizing Hyperrectangle) algorithm which use the feature weight vectors and the ED(Exemplar Densimeter) to optimize resulting Hyperrectangles. The proposed algorithm, as well as the EACH, required only approximately 40% of memory space that is needed in k-NN classifier, and showed a superior classification performance to the EACH. Also, by reducing the number of stored patterns, it showed excellent results in terms of classification when we compare it to the k-NN and the EACH.

Comparison of Machine Learning Classification Models for the Development of Simulators for General X-ray Examination Education (일반엑스선검사 교육용 시뮬레이터 개발을 위한 기계학습 분류모델 비교)

  • Lee, In-Ja;Park, Chae-Yeon;Lee, Jun-Ho
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.111-116
    • /
    • 2022
  • In this study, the applicability of machine learning for the development of a simulator for general X-ray examination education is evaluated. To this end, k-nearest neighbor(kNN), support vector machine(SVM) and neural network(NN) classification models are analyzed to present the most suitable model by analyzing the results. Image data was obtained by taking 100 photos each corresponding to Posterior anterior(PA), Posterior anterior oblique(Obl), Lateral(Lat), Fan lateral(Fan lat). 70% of the acquired 400 image data were used as training sets for learning machine learning models and 30% were used as test sets for evaluation. and prediction model was constructed for right-handed PA, Obl, Lat, Fan lat image classification. Based on the data set, after constructing the classification model using the kNN, SVM, and NN models, each model was compared through an error matrix. As a result of the evaluation, the accuracy of kNN was 0.967 area under curve(AUC) was 0.993, and the accuracy of SVM was 0.992 AUC was 1.000. The accuracy of NN was 0.992 and AUC was 0.999, which was slightly lower in kNN, but all three models recorded high accuracy and AUC. In this study, right-handed PA, Obl, Lat, Fan lat images were classified and predicted using the machine learning classification models, kNN, SVM, and NN models. The prediction showed that SVM and NN were the same at 0.992, and AUC was similar at 1.000 and 0.999, indicating that both models showed high predictive power and were applicable to educational simulators.

Feature Selection to Predict Very Short-term Heavy Rainfall Based on Differential Evolution (미분진화 기반의 초단기 호우예측을 위한 특징 선택)

  • Seo, Jae-Hyun;Lee, Yong Hee;Kim, Yong-Hyuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.706-714
    • /
    • 2012
  • The Korea Meteorological Administration provided the recent four-years records of weather dataset for our very short-term heavy rainfall prediction. We divided the dataset into three parts: train, validation and test set. Through feature selection, we select only important features among 72 features to avoid significant increase of solution space that arises when growing exponentially with the dimensionality. We used a differential evolution algorithm and two classifiers as the fitness function of evolutionary computation to select more accurate feature subset. One of the classifiers is Support Vector Machine (SVM) that shows high performance, and the other is k-Nearest Neighbor (k-NN) that is fast in general. The test results of SVM were more prominent than those of k-NN in our experiments. Also we processed the weather data using undersampling and normalization techniques. The test results of our differential evolution algorithm performed about five times better than those using all features and about 1.36 times better than those using a genetic algorithm, which is the best known. Running times when using a genetic algorithm were about twenty times longer than those when using a differential evolution algorithm.

Design of Lazy Classifier based on Fuzzy k-Nearest Neighbors and Reconstruction Error (퍼지 k-Nearest Neighbors 와 Reconstruction Error 기반 Lazy Classifier 설계)

  • Roh, Seok-Beom;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.101-108
    • /
    • 2010
  • In this paper, we proposed a new lazy classifier with fuzzy k-nearest neighbors approach and feature selection which is based on reconstruction error. Reconstruction error is the performance index for locally linear reconstruction. When a new query point is given, fuzzy k-nearest neighbors approach defines the local area where the local classifier is available and assigns the weighting values to the data patterns which are involved within the local area. After defining the local area and assigning the weighting value, the feature selection is carried out to reduce the dimension of the feature space. When some features are selected in terms of the reconstruction error, the local classifier which is a sort of polynomial is developed using weighted least square estimation. In addition, the experimental application covers a comparative analysis including several previously commonly encountered methods such as standard neural networks, support vector machine, linear discriminant analysis, and C4.5 trees.