• Title/Summary/Keyword: k-w Turbulence Model

Search Result 95, Processing Time 0.026 seconds

Flow Measurements on the Propeller Plane Using Fiber Optics LDV at Towing Tank (예인수조에서 Fiber Optics LDV를 이용한 프로펠러면에서의 유속측정)

  • J.E. Choi;H.W. Seo;K.S. Min
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.22-28
    • /
    • 1999
  • Flow measurements on the propeller plane of a 180,000 TDW Bulk Carrier model are carried out using a 3D fiber optics LDV at a towing tank. Mean velocities are successfully obtained. The turbulence characteristics such as Reynolds stresses, skewnesses, and flatnesses, are also investigated. However, those turbulence characteristics may include some errors due to the characteristics of the towing-tank experiments.

  • PDF

A Numerical Study of Turbulent Flow and Heat Transfer due to Slot-jet impinging on a Moving flat plate (이동평판에 작용하는 슬롯 충돌제트의 유동 및 열전달에 관한 수치적 연구)

  • Lee, Jong-Seok;Kim, Dong-Keon;Kim, Moon-Kyung;Yoon, Soon-Hyun;Kim, Bong-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2798-2803
    • /
    • 2008
  • The confined slot air jet impinging normally on a moving flat surface has been investigated numerically by using commercial CFD code Ansys CFX-V11. Turbulent flows are modeled using k-w turbulence model. Two-dimensional turbulent flow is considered. Calculations were conducted for a nozzle-to-plate spacing of eight slot nozzle width, at three Reynolds number(Re=4500, 6700 and 10,000) and four surface-to-velocity ratios i.e. 0, 0.25, 0.5 and 1. Results are compared against corresponding cases for heat transfer from a stationary plate. Local Nusselt number is calculated under constant wall temperature condition. The analysis reveals that the average Nusselt number increases considerably with the jet exit Reynolds number, but decrease with the plate velocity.

  • PDF

Development of Simulation Model for Diffusion of Oil Spill in the Ocean 1 -Three Dimensional Characteristics of the Circulation in the Nearly Closed Bay- (해양유출기름의 확산 시뮬레이션 모델 개발I- 폐쇄만에서의 3차원 흐름특성분석 -)

  • Lee, J.W.;Kim, K.C.;Kang, S.Y.;Doh, D.H.
    • Journal of Korean Port Research
    • /
    • v.11 no.2
    • /
    • pp.241-255
    • /
    • 1997
  • Three dimensional numerical model is used to simulate the circulation patterns in the Gamcheon Bay located in Pusan, Korea and compared with the observed data. The model is forced by winds, tidal elevation at open boundaries, and warm water discharged from the outfall of power plant, Turbulence mixing coefficients are calculated according to a ${\kippa}-{\varepsilon}$ turbulence closure submodel. Temperature, salinty and current are measuted extensively and these measuted data are compared with the simulation results. Eddy-like features exist both in observed data dna simulation results. These eddies are the results of interaction with the weak tidal current, wind driven current and warm water discharges. Compensational deeects are also found to exit such that while surface current is strong, bottom current tends to weaken and vice versa.

  • PDF

Wilson-Bappu Effect: Extended to Surface Gravity

  • Park, Sunkyung;Kang, Wonseok;Lee, Jeong-Eun;Lee, Sang-Gak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2013
  • Wilson and Bappu found a tight correlation between the stellar absolute visual magnitude (MV) and the width of the Ca II K emission line for late-type stars in 1957. Here, we revisit the Wilson-Bappu relationship (hereafter, WBR) to claim that WBR can be an excellent indicator of stellar surface gravity of late-type stars as well as a distance indicator. We have measured the width (W) of the Ca II K emission line in high resolution spectra of 125 late-type stars, which were obtained with Bohyunsan Optical Echelle Spectrograph (BOES) and adopted from the UVES archive. Based on our measurement of the emission line width (W), we have obtained a WBR of $M_V=33.76-18.00{\log}W$. In order to extend the WBR to be a surface gravity indicator, the stellar atmospheric parameters such as effective temperature ($T_{eff}$), surface gravity (logg), metallicity ([Fe/H]), and micro-turbulence (${\xi}_{tur}$) have been derived from the self-consistent detailed analysis using the Kurucz stellar atmospheric model and the abundance analysis code, MOOG. Using these stellar parameters and logW, we found that ${\log}g=-5.85\;{\log}W+9.97\;{\log}T_{eff}-23.48$ for late-type stars.

  • PDF

Numerical Study on Performance of Horizontal Axis (Propeller) Tidal Turbine

  • Kim, Kyuhan;Cahyono, Joni
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.296-296
    • /
    • 2015
  • The aim of this paper is to numerically explore the feasibility of designing a Mini-Hydro turbine. The interest for this kind of horizontal axis turbine relies on its versatility. For instance, in the field of renewable energy, this kind of turbine may be considered for different applications, such as: tidal power, run-of-the-river hydroelectricity, wave energy conversion. It is fundamental to improve the turbine performance and to decrease the equipment costs for achievement of "environmental friendly" solutions and maximization of the "cost-advantage". In the present work, the commercial CFD code ANSYS is used to perform 3D simulations, solving the incompressible Unsteady Reynolds-Averaged Navier-Stokes (U-RANS) equations discretized by means of a finite volume approach. The implicit segregated version of the solver is employed. The pressure-velocity coupling is achieved by means of the SIMPLE algorithm. The convective terms are discretized using a second order accurate upwind scheme, and pressure and viscous terms are discretized by a second-order-accurate centered scheme. A second order implicit time formulation is also used. Turbulence closure is provided by the realizable k - turbulence model. In this study, a mini hydro turbine (3kW) has been considered for utilization of horizontal axis impeller. The turbine performance and flow behavior have been evaluated by means of numerical simulations. Moreover, the performance of the impeller varied in the pressure distribution, torque, rotational speed and power generated by the different number of blades and angles. The model has been validated, comparing numerical results with available experimental data.

  • PDF

Numerical Analysis of Swirling Turbulent Flow in a Pipe (원관내 난류 선회류의 수치해석)

  • Lee, D.W.;Kim, K.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.396-405
    • /
    • 1995
  • Numerical calculations are carried out for the swirling turbulent flow in a pipe. Calculations are made for the flow with swirl parameter of 2.25 and the Reynolds number of 24,300. The turbulence closure models used in these calculations are two different types of Reynolds stress model, and the results are compared with those of $k-{\varepsilon}$ model and the experimental data. The finite volume method is used for the discretization, and the power-law scheme is employed as a numerical scheme. The SIMPLE algorithm is used for velocity-pressure correction. The computational results show that GL model gives the results better than those of SSG model in the predictions of velocity and stress components.

  • PDF

SHM-based probabilistic representation of wind properties: statistical analysis and bivariate modeling

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.591-600
    • /
    • 2018
  • The probabilistic characterization of wind field characteristics is a significant task for fatigue reliability assessment of long-span railway bridges in wind-prone regions. In consideration of the effect of wind direction, the stochastic properties of wind field should be represented by a bivariate statistical model of wind speed and direction. This paper presents the construction of the bivariate model of wind speed and direction at the site of a railway arch bridge by use of the long-term structural health monitoring (SHM) data. The wind characteristics are derived by analyzing the real-time wind monitoring data, such as the mean wind speed and direction, turbulence intensity, turbulence integral scale, and power spectral density. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method is proposed to formulate the joint distribution model of wind speed and direction. For the probability density function (PDF) of wind speed, a double-parameter Weibull distribution function is utilized, and a von Mises distribution function is applied to represent the PDF of wind direction. The SQP algorithm with multi-start points is used to estimate the parameters in the bivariate model, namely Weibull-von Mises mixture model. One-year wind monitoring data are selected to validate the effectiveness of the proposed modeling method. The optimal model is jointly evaluated by the Bayesian information criterion (BIC) and coefficient of determination, $R^2$. The obtained results indicate that the proposed SQP algorithm-based finite mixture modeling method can effectively establish the bivariate model of wind speed and direction. The established bivariate model of wind speed and direction will facilitate the wind-induced fatigue reliability assessment of long-span bridges.

Visualization and 3D Numerical Analysis of the Circulation Flow of the Neutron Moderator in a Heavy-Water Nuclear Reactor (가압중수형 원자로의 중성자 감속재 순환 유동가시화와 삼차원 전산해석)

  • Eom, Tae-Kwang;Lee, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.189-196
    • /
    • 2012
  • The heavy moderator acts as the ultimate heat-sink in an operating CANDU reactor. HUKINS has been developed to investigate moderator flow patterns. HUKINS consists of a 38.4-mm-thick cylindrical shell with a 0.95 m inner diameter and 88 sus-tubes that produce a total heat of 10 kW. A chemical visualization method was selected to estimate the occurrence of typical moderator flow patterns. Momentum-dominated flow, mixed flow, and buoyancy-dominated flow are detected under conditions of a heat load of 7.7 kW and input mass flow rates of 4, 7, and 11 L/min. The experimental results are similar to the results of a CFD simulation that consisted of approximately 1.9 million grids and was conducted using the k-${\varepsilon}$ turbulence model. Therefore, both the present experiments and simulations using HUKINS, a 1/8-scale model, represent all three important flow patterns expected in the real CANDU6 reference reactor. Thus, it has been demonstrated that HUKINS could be useful in the study of CANDU6 moderator circulation.

NUMERICAL ANALYSIS OF A 150KW HUELS TYPE ARC HEATER (150kW급 Huels형 아크 히터 내부의 유동 해석)

  • Han, S.H.;Byeon, J.Y.;Kim, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.562-566
    • /
    • 2010
  • Numerical analysis of 150kW Huels-type arc jet was performed using compressible Navier-Stokes CFD code. To consider chemical reaction by high temperature, the flow was assumed to be chemical equilibrium states. As a turbulence and a radiation model, the two-equation k-epsilon model and the 3-band radiation model were adopted, respectively. Mass flow rate and current density were given as conditions for calculations. In this study, two kinds of mechanisms for injection of air flow wire considered. One is that air is provided by left wall surface and the other is that air is injected from upper wall surface. The pressure, density and temperature contours of two cases were compared and heat transfer rates were estimated. The numerical results of two cases were not much different to each other. However, in real 150KW device, air is injected from upper wall surface with swirl. To calculate more accurately, swirl effect is must be considered.

  • PDF

Load comparison of 750kW WTGS by field test (750kW 풍력발전기 현장시험을 통한 하중 비교)

  • Bang, Jo-Hyug;Hong, Hyeok-Soo;Park, Jin-Il;Ryu, Ji-Yune
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.303-306
    • /
    • 2008
  • This study proposes an essential process of type certificate, which is load comparison for proving the calculated design load. The load measurement was carried out according to IEC 61400-13 standard and the load calculation was performed with same condition using FLEX 5 code. For more accurate load simulation, the controller parameter of original model at the design stage was modified to site optimized value and some node points are added to coincidence with measurement. The load comparison was performed with various wind parameter, turbulence intensity and wind shear. As a result, simulated loads ware good agreed with the measured load. Therefore, the calculated design loads according to IEC 61400-1 standard were proved to valid.

  • PDF