Park, Chun-Seo;Song, Seok-Il;Sin, Jae-Ryong;Yu, Jae-Su
Journal of KIISE:Databases
/
v.29
no.1
/
pp.58-71
/
2002
Generally, multi-dimensional data such as image and spatial data require large amount of storage space. There is a limit to store and manage those large amount of data in single workstation. If we manage the data on parallel computing environment which is being actively researched these days, we can get highly improved performance. In this paper, we propose a parallel high-dimensional index structure that exploits the parallelism of the parallel computing environment. The proposed index structure is nP(processor)-n$\times$mD(disk) architecture which is the hybrid type of nP-nD and lP-nD. Its node structure increases fan-out and reduces the height of a index tree. Also, A range search algorithm that maximizes I/O parallelism is devised, and it is applied to K-nearest neighbor queries. Through various experiments, it is shown that the proposed method outperforms other parallel index structures.
Proceedings of the Korean Information Science Society Conference
/
2011.06c
/
pp.45-48
/
2011
본 논문에서는 다양한 타입의 위치기반 데이터들을 하나의 R-tree로 통합합 $R^m$-tree의 구조와 이 $R^m$-tree를 이용하여 질의 포인트로부터 각 타입에서 k개의 가까운 위치기반 데이터를 찾는 mkNN(multi-type k nearest neighbor) 질의 처리기법을 제안하였다. 특히, 다양한 타입의 위치기반 데이터들을 각 타입별로 독립된 R-tree로 유지하지 않고, 하나의 $R^m$-tree로 통합하여 관리함으로써 mkNN 질의 처리시 같은 레벨의 공간의 반복탐색을 줄일 수 있도록 고안하였다. 그리고 각 타입 t에 대한 위치데이터를 관리하는 부가적인 타입정보 자료구조로서 위치정보를 담은 TMBR, 데이터 개수정보를 담은 $I_t$-entry를 새로이 고안하여 mkNN질의 처리시 효율적인 휠터링(filtering)과 검색과정이 이루어지도록 하였다.
Kim, Byung-Gon;Han, Joung-Woon;Lee, Jaeho;Haechull Lim
Proceedings of the IEEK Conference
/
2000.07b
/
pp.869-872
/
2000
Although many content-based image retrieval systems using shape feature have tried to cover rotation-, position- and scale-invariance between images, there have been problems to cover three kinds of variance at the same time. In this paper, we introduce new approach to extract shape feature from image using MBR(Minimum Bounding Rectangle). The proposed method scans image for extracting MBR information and, based on MBR information, compute contour information that consists of 16 points. The extracted information is converted to specific values by normalization and rotation. The proposed method can cover three kinds of invariance at the same time. We implemented our method and carried out experiments. We constructed R*_tree indexing structure, perform k-nearest neighbor search from query image, and demonstrate the capability and usefulness of our method.
Solving the disclosure problem of sensitive information with the k-nearest neighbor query, location dummy technique, or interfering data in location-based services (LBSs) is a new research topic. Although they reduced security threats, previous studies will be ineffective in the case of sparse users or K-successive privacy, and additional calculations will deteriorate the performance of LBS application systems. Therefore, a model is proposed herein, which is based on geohash-encoding technology instead of latitude and longitude, memcached server cluster, encryption and decryption, and authentication. Simulation results based on PHP and MySQL show that the model offers approximately 10× speedup over the conventional approach. Two problems are solved using the model: sensitive information in LBS application is not disclosed, and the relationship between an individual and a track is not leaked.
In this paper we propose an object similarity matching method based on shape characteristics of an object in an image. The proposed method extracts edge points from edges of objects and generates a log polar histogram with respect to each edge point to represent the relative placement of extracted points. It performs the matching in such a way that it compares polar histograms of two edge points sequentially along with edges of objects, and uses a well-known k-NN(nearest neighbor) approach to retrieve similar objects from a database. To verify the proposed method, we've compared it to an existing Shape-Context method. Experimental results reveal that our method is more accurate in object matching than the existing method, showing that when k=5, the precision of our method is 0.75-0.90 while that of the existing one is 0.37, and when k=10, the precision of our method is 0.61-0.80 while that of the existing one is 0.31. In the experiment of rotational transformation, our method is also more robust compared to the existing one, showing that the precision of our method is 0.69 while that of the existing one is 0.30.
Under the conditional independence assumption among local features, the Naive Bayes Nearest Neighbor (NBNN) classifier has been recently proposed and performs classification without any training or quantization phases. While the original NBNN shows high classification accuracy without adopting an explicit training phase, the conditional independence among local features is against the compositionality of objects indicating that different, but related parts of an object appear together. As a result, the assumption of the conditional independence weakens the accuracy of classification techniques based on NBNN. In this work, we look into this issue, and propose a novel Bayesian network for an NBNN based classification to consider the conditional dependence among features. To achieve our goal, we extract a high-level feature and its corresponding, multiple low-level features for each image patch. We then represent them based on a simple, two-level layered Bayesian network, and design its classification function considering our Bayesian network. To achieve low memory requirement and fast query-time performance, we further optimize our representation and classification function, named relation-based Bayesian network, by considering and representing the relationship between a high-level feature and its low-level features into a compact relation vector, whose dimensionality is the same as the number of low-level features, e.g., four elements in our tests. We have demonstrated the benefits of our method over the original NBNN and its recent improvement, and local NBNN in two different benchmarks. Our method shows improved accuracy, up to 27% against the tested methods. This high accuracy is mainly due to consideration of the conditional dependences between high-level and its corresponding low-level features.
구형 피라미드 기법[1,2]은 d-차원의 공간을 2d개의 구형 피라미드들로 분할하는 특별한 공간 분할 방식을 이용하여 고차원 데이터를 효율적으로 색인할 수 있는 새로운 색인 방법으로 제안되었다. 구형 피라미드 기법은 구형태의 영역질의를 처리하는 알고리즘을 제안하였으나 유사 검색에 많이 사용되는 또 다른 종류의 질의인 최근접 질의를 처리하는 알고리즘을 제안하지 못했다. 본 논문에서는 점진적 최근접 질의 처리 알고리즘을 확장하여 구형피라미드 기법 상에서 효율적으로 최근접 질의를 처리하는 알고리즘을 제안한다. 마지막으로, R*-tree와 X-tree 상에서 구현된 점진적 k-최근접 질의 처리 방법과 다양한 비교 실험을 통하여 구형 피라미드 기법을 이용한 k-최근접 질의 처리 방법이 더 효율적임을 보인다.
Proceedings of the Korea Information Processing Society Conference
/
2012.11a
/
pp.1410-1411
/
2012
최근 모바일 사용자의 안전한 위치기반 서비스의 사용을 위한 아웃소싱 데이터베이스에서 객체 및 사용자의 위치 정보를 보호하는 연구가 위치 데이터를 보호하기 위한 연구가 활발히 진행되고 있다. 그러나 기존 연구는 불필요한 객체 정보를 요구하기 때문에, 높은 질의 처리 시간을 지니는 단점을 지닌다. 이러한 문제점을 해결하기 위해, 본 논문에서는 기준 POI를 중심으로 객체의 방향성 정보와 변환된 거리를 이용하여, 사용자와 객체의 정보를 보호하는 k-최근접 질의처리 알고리즘을 제안한다.
Kim, Hyeong-Il;Kim, Hyeong-Jin;Shin, Youngsung;Chang, Jae-woo
Journal of KIISE
/
v.43
no.12
/
pp.1437-1457
/
2016
In outsourced databases, the cloud provides an authorized user with querying services on the outsourced database. However, sensitive data, such as financial or medical records, should be encrypted before being outsourced to the cloud. Meanwhile, k-Nearest Neighbor (kNN) query is the typical query type which is widely used in many fields and the result of the kNN query is closely related to the interest and preference of the user. Therefore, studies on secure kNN query processing algorithms that preserve both the data privacy and the query privacy have been proposed. However, existing algorithms either suffer from high computation cost or leak data access patterns because retrieved index nodes and query results are disclosed. To solve these problems, in this paper we propose a new kNN query processing algorithm on the encrypted database. Our algorithm preserves both data privacy and query privacy. It also hides data access patterns while supporting efficient query processing. To achieve this, we devise an encrypted index search scheme which can perform data filtering without revealing data access patterns. Through the performance analysis, we verify that our proposed algorithm shows better performance than the existing algorithms in terms of query processing times.
Journal of Korea Spatial Information System Society
/
v.11
no.1
/
pp.105-114
/
2009
Recently, location-based services which provides k nearest POIs, e.g., gas stations, restaurants and banks, are essential such applications as telematics, ITS(Intelligent Transport Systems) and kiosk. For this, the Voronoi Diagram k-NN(Nearest Neighbor) search algorithm has been proposed. It retrieves k-NNs by using a file storing pre-computed network distances of POIs in Voronoi diagram. However, this algorithm causes the cost problem when expanding a Voronoi diagram. Therefore, in this paper, we propose an algorithm which generates a matrix of the shortest distance between border points of a Voronoi diagram. The shortest distance is measured each border point to all of the rest border points of a Voronoi Diagram. To retrieve desired k nearest POIs, we also propose a k-NN search algorithm using the matrix of the shortest distance. The proposed algorithms can m inim ize the cost of expanding the Voronoi diagram by accessing the pre-computed matrix of the shortest distances between border points. In addition, we show that the proposed algorithm has better performance in terms of retrieval time, compared with existing works.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.