• 제목/요약/키워드: k-means clustering method

Search Result 559, Processing Time 0.028 seconds

A Fast K-means and Fuzzy-c-means Algorithms using Adaptively Initialization (적응적인 초기치 설정을 이용한 Fast K-means 및 Frizzy-c-means 알고리즘)

  • 강지혜;김성수
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.516-524
    • /
    • 2004
  • In this paper, the initial value problem in clustering using K-means or Fuzzy-c-means is considered to reduce the number of iterations. Conventionally the initial values in clustering using K-means or Fuzzy-c-means are chosen randomly, which sometimes brings the results that the process of clustering converges to undesired center points. The choice of intial value has been one of the well-known subjects to be solved. The system of clustering using K-means or Fuzzy-c-means is sensitive to the choice of intial values. As an approach to the problem, the uniform partitioning method is employed to extract the optimal initial point for each clustering of data. Experimental results are presented to demonstrate the superiority of the proposed method, which reduces the number of iterations for the central points of clustering groups.

K-means based Clustering Method with a Fixed Number of Cluster Members

  • Yi, Faliu;Moon, Inkyu
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1160-1170
    • /
    • 2014
  • Clustering methods are very useful in many fields such as data mining, classification, and object recognition. Both the supervised and unsupervised grouping approaches can classify a series of sample data with a predefined or automatically assigned cluster number. However, there is no constraint on the number of elements for each cluster. Numbers of cluster members for each cluster obtained from clustering schemes are usually random. Thus, some clusters possess a large number of elements whereas others only have a few members. In some areas such as logistics management, a fixed number of members are preferred for each cluster or logistic center. Consequently, it is necessary to design a clustering method that can automatically adjust the number of group elements. In this paper, a k-means based clustering method with a fixed number of cluster members is proposed. In the proposed method, first, the data samples are clustered using the k-means algorithm. Then, the number of group elements is adjusted by employing a greedy strategy. Experimental results demonstrate that the proposed clustering scheme can classify data samples efficiently for a fixed number of cluster members.

An Edge Extraction Method Using K-means Clustering In Image (영상에서 K-means 군집화를 이용한 윤곽선 검출 기법)

  • Kim, Ga-On;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.281-288
    • /
    • 2014
  • A method for edge detection using K-means clustering is proposed in this paper. The method is performed through there steps. Histogram equalizing is applied to the image for the uniformed intensity distribution. Pixels are clustered by K-means clustering technique. Then Sobel mask is applied to detect edges. Experiments showed that this method detected edges better than conventional method.

Projection Pursuit K-Means Visual Clustering

  • Kim, Mi-Kyung;Huh, Myung-Hoe
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.4
    • /
    • pp.519-532
    • /
    • 2002
  • K-means clustering is a well-known partitioning method of multivariate observations. Recently, the method is implemented broadly in data mining softwares due to its computational efficiency in handling large data sets. However, it does not yield a suitable visual display of multivariate observations that is important especially in exploratory stage of data analysis. The aim of this study is to develop a K-means clustering method that enables visual display of multivariate observations in a low-dimensional space, for which the projection pursuit method is adopted. We propose a computationally inexpensive and reliable algorithm and provide two numerical examples.

Customer Clustering Method Using Repeated Small-sized Clustering to improve the Classifying Ability of Typical Daily Load Profile (일일 대표 부하패턴의 분별력을 높이기 위한 반복적인 소규모 군집화를 이용한 고객 군집화 방법)

  • Kim, Young-Il;Song, Jae-Ju;Oh, Do-Eun;Jung, Nam-Joon;Yang, Il-Kwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2269-2274
    • /
    • 2009
  • Customer clustering method is used to make a TDLP (typical daily load profile) to estimate the quater hourly load profile of non-AMR (Automatic Meter Reading) customer. In this paper, repeated small-sized clustering method is supposed to improve the classifying ability of TDLP. K-means algorithm is well-known clustering technology of data mining. To reduce the local maxima of k-means algorithm, proposed method clusters average load profiles to small-sized clusters and selects the highest error rated cluster and clusters this to small-sized clusters repeatedly to minimize the local maxima.

Ganglion Cyst Region Extraction from Ultrasound Images Using Possibilistic C-Means Clustering Method

  • Suryadibrata, Alethea;Kim, Kwang Baek
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.49-52
    • /
    • 2017
  • Ganglion cysts are benign soft tissues usually encountered in the wrist. In this paper, we propose a method to extract a ganglion cyst region from ultrasonography images by using image segmentation. The proposed method using the possibilistic c-means (PCM) clustering method is applicable to ganglion cyst extraction. The methods considered in this thesis are fuzzy stretching, median filter, PCM clustering, and connected component labeling. Fuzzy stretching performs well on ultrasonography images and improves the original image. Median filter reduces the speckle noise without decreasing the image sharpness. PCM clustering is used for categorizing pixels into the given cluster centers. Connected component labeling is used for labeling the objects in an image and extracting the cyst region. Further, PCM clustering is more robust in the case of noisy data, and the proposed method can extract a ganglion cyst area with an accuracy of 80% (16 out of 20 images).

VS-FCM: Validity-guided Spatial Fuzzy c-Means Clustering for Image Segmentation

  • Kang, Bo-Yeong;Kim, Dae-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.89-93
    • /
    • 2010
  • In this paper a new fuzzy clustering approach to the color clustering problem has been proposed. To deal with the limitations of the traditional FCM algorithm, we propose a spatial homogeneity-based FCM algorithm. Moreover, the cluster validity index is employed to automatically determine the number of clusters for a given image. We refer to this method as VS-FCM algorithm. The effectiveness of the proposed method is demonstrated through various clustering examples.

Real-Time Traffic Sign Detection Using K-means Clustering and Neural Network (K-means Clustering 기법과 신경망을 이용한 실시간 교통 표지판의 위치 인식)

  • Park, Jung-Guk;Kim, Kyung-Joong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.491-493
    • /
    • 2011
  • Traffic sign detection is the domain of automatic driver assistant systems. There are literatures for traffic sign detection using color information, however, color-based method contains ill-posed condition and to extract the region of interest is difficult. In our work, we propose a method for traffic sign detection using k-means clustering method, back-propagation neural network, and projection histogram features that yields the robustness for ill-posed condition. Using the color information of traffic signs enables k-means algorithm to cluster the region of interest for the detection efficiently. In each step of clustering, a cluster is verified by the neural network so that the cluster exactly represents the location of a traffic sign. Proposed method is practical, and yields robustness for the unexpected region of interest or for multiple detections.

Repeated Clustering to Improve the Discrimination of Typical Daily Load Profile

  • Kim, Young-Il;Ko, Jong-Min;Song, Jae-Ju;Choi, Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.281-287
    • /
    • 2012
  • The customer load profile clustering method is used to make the TDLP (Typical Daily Load Profile) to estimate the quarter hourly load profile of non-AMR (Automatic Meter Reading) customers. This study examines how the repeated clustering method improves the ability to discriminate among the TDLPs of each cluster. The k-means algorithm is a well-known clustering technology in data mining. Repeated clustering groups the cluster into sub-clusters with the k-means algorithm and chooses the sub-cluster that has the maximum average error and repeats clustering until the final cluster count is satisfied.

K-means clustering using a center of gravity for grid-based sample (그리드 기반 표본의 무게중심을 이용한 케이-평균군집화)

  • Lee, Sun-Myung;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.1
    • /
    • pp.121-128
    • /
    • 2010
  • K-means clustering is an iterative algorithm in which items are moved among sets of clusters until the desired set is reached. K-means clustering has been widely used in many applications, such as market research, pattern analysis or recognition, image processing, etc. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters that we want, because it is more primitive, explorative. In this paper we propose a new method of k-means clustering using a center of gravity for grid-based sample. It is more fast than any traditional clustering method and maintains its accuracy.