• 제목/요약/키워드: k-means clustering algorithm

검색결과 547건 처리시간 0.031초

외부 군집 연관 기준 정보를 이용한 군집수 최적화 (A Study on Optimizing the Number of Clusters using External Cluster Relationship Criterion)

  • 이현진;지태창
    • 디지털콘텐츠학회 논문지
    • /
    • 제12권3호
    • /
    • pp.339-345
    • /
    • 2011
  • 군집화는 주어진 데이터를 분할하여 데이터 속에 숨겨져 있는 의미를 자동으로 발견하는 방법이다. k-means는 간단하고 빠른 군집화 알고리즘 중의 하나이다. 군집의 수 k는 군집화를 수행하는데 매우 중요한 요소이며, k의 값에 의해 군집화 결과가 달라진다. 본 논문에서는 반복적인 k-means 수행과 군집의 품질을 평가하는 외부 군집 연관 기준 정보를 결합하여 최적의 군집수를 결정하는 방법을 제안한다. 실험 결과 기존의 방법들에 비하여 제안하는 방법이 군집수의 정확성 측면에서 우수한 성능을 보였다.

K-means Clustering using a Grid-based Sampling

  • 박희창;조광현
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 추계학술대회
    • /
    • pp.249-258
    • /
    • 2003
  • K-means clustering has been widely used in many applications, such that pattern analysis or recognition, data analysis, image processing, market research and so on. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters that we want, because it is more primitive, explorative. In this paper we propose a new method of k-means clustering using the grid-based sample. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

K-means Clustering using a Grid-based Representatives

  • 박희창;이선명
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 추계학술대회
    • /
    • pp.229-238
    • /
    • 2003
  • K-means clustering has been widely used in many applications, such that pattern analysis, data analysis, market research and so on. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters, because it is more primitive and explorative. In this paper we propose a new method of k-means clustering using the grid-based representative value(arithmetic and trimmed mean) for sample. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

쿼드 트리를 이용한 동적 공간 분할 기반 차분 프라이버시 k-평균 클러스터링 알고리즘 (Differentially Private k-Means Clustering based on Dynamic Space Partitioning using a Quad-Tree)

  • 구한준;정우환;오성웅;권수용;심규석
    • 정보과학회 논문지
    • /
    • 제45권3호
    • /
    • pp.288-293
    • /
    • 2018
  • 최근 공개되는 데이터에 적용하는 다양한 프라이버시 보호 기법들이 연구가 되어왔다. 그 중 차분 프라이버시는 본래의 데이터에 확률적인 노이즈를 더하여 공격자의 사전 지식에 상관없이 개인 정보를 보호한다. 기존 차분 프라이버시를 만족하는 k-평균 클러스터링은 데이터로부터 차분 프라이버시를 만족하는 히스토그램 형태로 바꾼 뒤. k-평균 클러스터링 알고리즘을 수행한다. 하지만 이는 데이터의 분포와 상관없이 등간격으로 히스토그램을 만들기 때문에 노이즈가 삽입되는 버킷이 많아지는 단점이 있다. 이를 해결하기 위해 본 논문에서는 데이터의 분포를 더 적은 버킷으로 나타낼 수 있는 쿼드 트리를 이용하여 히스토그램을 만든 뒤 k-평균을 찾는 알고리즘을 제안한다. 또한, 실험을 통해 기존의 알고리즘보다 더 좋은 성능을 가지는 것을 보인다.

학습시간을 개선한 Fuzzy c-means 알고리즘 (The Enhancement of Learning Time in Fuzzy c-means algorithm)

  • 김형철;조제황
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
    • /
    • pp.113-116
    • /
    • 2001
  • The conventional K-means algorithm is widely used in vector quantizer design and clustering analysis. Recently modified K-means algorithm has been proposed where the codevector updating step is as fallows: new codevector = current codevector + scale factor (new centroid - current codevector). This algorithm uses a fixed value for the scale factor. In this paper, we propose a new algorithm for the enhancement of learning time in fuzzy c-means a1gorithm. Experimental results show that the proposed method produces codebooks about 5 to 6 times faster than the conventional K-means algorithm with almost the same Performance.

  • PDF

새로운 모형기반 군집분석 알고리즘

  • 박정수;황현식
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 추계 학술발표회 논문집
    • /
    • pp.97-100
    • /
    • 2005
  • A new model-based clustering algorithm is proposed. The idea starts from the assumption that observations are realizations of Gaussian processes and so are correlated. With a special covariance structure, the posterior probability that an observation belongs to each cluster is computed using the ECM algorithm. A preliminary result of small-scale simulation study is given to compare with the k-means clustering algorithms.

  • PDF

지식 분류의 자동화를 위한 클러스터링 모형 연구 (Development of a Clustering Model for Automatic Knowledge Classification)

  • 정영미;이재윤
    • 정보관리학회지
    • /
    • 제18권2호
    • /
    • pp.203-230
    • /
    • 2001
  • 본 연구에서는 문헌을 기반으로 한 지식의 자동분류를 위해 최적의 클러스터링 모형을 제시하고자 하였다. 클러스터링 실험을 위해서 신문기사 실험집단과 학술논문 초록 실험집단을 구축하였고, 분류 성능 평가 척도인 WACS를 개발하였다. 분류자질로 사용한 용어의 집합은 다양한 자질 축소 기준을 적용하여 생성하였으며, 다양한 용어 가중치를 사용하였다. 유사계수 공식으로는 코사인 계수와 자카드 계수를 적용하였으며, 클러스터링 알고리즘으로는 비계층적 기법인 완전연결 기법과 계층적 기법인 K-means기법을 각각 사용하였다. 실험 결과 신문기사 원문 집단에서의 성능이 좋았으며, 완전연결 기법의 성능이 K-means 기법보다 높게 나타났다. 역문헌빈도의 적용은 완전연결 클러스터링에서는 긍정적인 효과가 나타났으나, K-means 클러스터링에서는 그렇지 못했다. 분류자질은 전체의 7.66%만 사용하였을 경우에도 성능 저하가 크지 않았으며, K-means 클러스터링에서는 오히려 성능 향상 효과가 있었다.

  • PDF

Fusion of Background Subtraction and Clustering Techniques for Shadow Suppression in Video Sequences

  • Chowdhury, Anuva;Shin, Jung-Pil;Chong, Ui-Pil
    • 융합신호처리학회논문지
    • /
    • 제14권4호
    • /
    • pp.231-234
    • /
    • 2013
  • This paper introduces a mixture of background subtraction technique and K-Means clustering algorithm for removing shadows from video sequences. Lighting conditions cause an issue with segmentation. The proposed method can successfully eradicate artifacts associated with lighting changes such as highlight and reflection, and cast shadows of moving object from segmentation. In this paper, K-Means clustering algorithm is applied to the foreground, which is initially fragmented by background subtraction technique. The estimated shadow region is then superimposed on the background to eliminate the effects that cause redundancy in object detection. Simulation results depict that the proposed approach is capable of removing shadows and reflections from moving objects with an accuracy of more than 95% in every cases considered.

퍼지 Clustering 알고리즘을 이용한 휘발성 화학물질의 분류 (Classification of Volatile Chemicals using Fuzzy Clustering Algorithm)

  • 변형기;김갑일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1042-1044
    • /
    • 1996
  • The use of fuzzy theory in task of pattern recognition may be applicable gases and odours classification and recognition. This paper reports results obtained from fuzzy c-means algorithms to patterns generated by odour sensing system using an array of conducting polymer sensors, for volatile chemicals. For the volatile chemicals clustering problem, the three unsupervise fuzzy c-means algorithms were applied. From among the pattern clustering methods, the FCMAW algorithm, which updated the cluster centres more frequently, consistently outperformed. It has been confirmed as an outstanding clustering algorithm throughout experimental trials.

  • PDF

암호화된 데이터에 대한 프라이버시를 보존하는 k-means 클러스터링 기법 (Privacy-Preserving k-means Clustering of Encrypted Data)

  • 정윤송;김준식;이동훈
    • 정보보호학회논문지
    • /
    • 제28권6호
    • /
    • pp.1401-1414
    • /
    • 2018
  • k-means 클러스터링 알고리즘은 주어진 데이터를 비슷한 k개의 그룹으로 묶어서 시장 세분화나 의료연구 등의 다양한 분야에서 활용되고 있다. 본 논문에서는 다수의 사용자 데이터를 노출하지 않고 암호화하여 외부 서버에 저장하는 환경에서 프라이버시를 보존하는 클러스터링 알고리즘을 제안한다. 분산된 서버에 평문으로 저장된 데이터를 다자간 계산프로토콜을 기반으로 수행된 기존 클러스터링 알고리즘 연구와 비교했을 때 제안하는 기법은 모든 데이터를 안전하게 암호문으로 저장할 수 있다는 뚜렷한 장점이 있다. 데이터 간의 거리를 측정하고 비교하기 위해서 덧셈과 곱셈 연산이 가능한 완전동형암호로 데이터를 암호화한다. 프로토콜 수행과정에서 사용자 데이터의 안전성을 분석하고 통신량과 연산량을 다른 연구들과 비교한다.