• 제목/요약/키워드: k-means clustering algorithm

검색결과 547건 처리시간 0.028초

신병 주특기교육 성취집단 예측모형 개발 (Development of newly recruited privates on-the-job Training Achievements Group Classification Model)

  • 곽기효;서용무
    • 한국국방경영분석학회지
    • /
    • 제33권2호
    • /
    • pp.101-113
    • /
    • 2007
  • 국방부에서 발표한 '국방개혁에 관한 법률'에 따라 2014년까지 현역병들에 대한 복무기간이 단계적으로 단축될 예정이다. 이에 따라 육군에서는 좀 더 효율적인 직무교육 방안의 일환으로 훈련병들에게 '차등제 교육'을 시행하고 있다. 이러한 차등제 교육의 효과를 향상시키기 위해서는 훈련병들의 예상 학업 성취도를 미리 예측하여 성취집단별로 차별화 된 교육과정을 거치게 하는 것이 매우 중요하다. 따라서 본 연구에서는 입교초기에 얻을 수 있는 신병들의 제한된 자료들만을 이용하여 그들의 예상 교육 성취집단을 예측하는 모형을 개발하였다. 본 모형의 목적 변수는 '성취집단'이며 '일반관리 인원' 및 '집중관리 인원'의 두 가지 값을 갖는다. 사용된 기법은 인공신경망(Neural Network) 모형, 의사결정나무(Decision Tree) 모형, SVM 모형, 그리고 Naive Bayesian모형 등 4가지 순수 모형과, 각각의 순수 모형을 k-means군집기법과 혼합한 4가지의 혼합모형 등 총 8개의 모형의 성능을 비교 분석하였다. 실험 결과 k-means군집기법과 인공신경망 기법을 혼합한 모형이 가장 좋은 예측력을 보이는 것으로 나타났다. 이러한 교육 성취집단 예측 모형은 향후 군에서 이루어지는 다양한 교육 프로그램에 효과적으로 이용될 수 있을 것으로 기대된다.

생물학적 후각 시스템을 모방한 대규모 가스 센서 어레이에서 코사인 유사도와 퍼지 클러스터링을 이용한 중복도 제거 방법 (The Redundancy Reduction Using Fuzzy C-means Clustering and Cosine Similarity on a Very Large Gas Sensor Array for Mimicking Biological Olfaction)

  • 김정도;김정주;박성대;변형기;;임승주
    • 센서학회지
    • /
    • 제21권1호
    • /
    • pp.59-67
    • /
    • 2012
  • It was reported that the latest sensor technology allow an 65536 conductive polymer sensor array to be made with broad but overlapping selectivity to different families of chemicals emulating the characteristics found in biological olfaction. However, the supernumerary redundancy always accompanies great error and risk as well as an inordinate amount of computation time and local minima in signal processing, e.g. neural networks. In this paper, we propose a new method to reduce the number of sensor for analysis by reducing redundancy between sensors and by removing unstable sensors using the cosine similarity method and to decide on representative sensor using FCM(Fuzzy C-Means) algorithm. The representative sensors can be just used in analyzing. And, we introduce DWT(Discrete Wavelet Transform) for data compression in the time domain as preprocessing. Throughout experimental trials, we have done a comparative analysis between gas sensor data with and without reduced redundancy. The possibility and superiority of the proposed methods are confirmed through experiments.

Mobile Application based on Image Processing and a Proportion for Food Intake Measuring

  • Kim, Do-Hyeon;Kim, Yoon;Han, Yu-Ri
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권5호
    • /
    • pp.57-63
    • /
    • 2017
  • In the paper, we propose a new reliable technique for measuring food intake based on image automatically without user intervention. First, food and bowl image before and after meal is obtained by user. The food and the bowl are divided into each region by the K-means clustering, Otsu algorithm, Morphology, etc. And the volume of food is measured by a proportional expression based on the information of the container such as it's entrance diameter, depth, and bottom diameter. Finally, our method calculates the volume of the consumed food by the difference between before and after meal. The proposed technique has higher accuracy than existing method for measuring food intake automatically. The experiment result shows that the average error rate is up to 7% for three types of containers. Computer simulation results indicate that the proposed algorithm is a convenient and accurate method of measuring the food intake.

Implementation of Elbow Method to improve the Gases Classification Performance based on the RBFN-NSG Algorithm

  • Jeon, Jin-Young;Choi, Jang-Sik;Byun, Hyung-Gi
    • 센서학회지
    • /
    • 제25권6호
    • /
    • pp.431-434
    • /
    • 2016
  • Currently, the radial basis function network (RBFN) and various other neural networks are employed to classify gases using chemical sensors arrays, and their performance is steadily improving. In particular, the identification performance of the RBFN algorithm is being improved by optimizing parameters such as the center, width, and weight, and improved algorithms such as the radial basis function network-stochastic gradient (RBFN-SG) and radial basis function network-normalized stochastic gradient (RBFN-NSG) have been announced. In this study, we optimized the number of centers, which is one of the parameters of the RBFN-NSG algorithm, and observed the change in the identification performance. For the experiment, repeated measurement data of 8 samples were used, and the elbow method was applied to determine the optimal number of centers for each sample of input data. The experiment was carried out in two cases(the only one center per sample and the optimal number of centers obtained by elbow method), and the experimental results were compared using the mean square error (MSE). From the results of the experiments, we observed that the case having an optimal number of centers, obtained using the elbow method, showed a better identification performance than that without any optimization.

PSO 알고리즘을 이용한 퍼지 Extreme Learning Machine 최적화 (Optimization of Fuzzy Learning Machine by Using Particle Swarm Optimization)

  • 노석범;왕계홍;김용수;안태천
    • 한국지능시스템학회논문지
    • /
    • 제26권1호
    • /
    • pp.87-92
    • /
    • 2016
  • 본 논문에서는 일반적인 신경회로망의 단점인 느린 학습속도를 획기적으로 개선한 네트워크인 Extreme Learning Machine과 전문가들의 언어적 정보들을 기술 할 수 있는 퍼지 이론을 접목한 퍼지 Extreme Learning Machine을 최적화하기 위하여 Particle Swarm Optimization 알고리즘을 이용하였다. 퍼지 Extreme Learning Machine의 활성화 함수를 일반적인 시그모이드 함수를 사용하지 않고, 퍼지 C-Means 클러스터링 알고리즘의 활성화 레벨 함수를 이용하였다. Particle Swarm Optimization 알고리즘과 같은 최적화 알고리즘을 통하여 퍼지 Extreme Learning Machine의 활성화 함수의 파라미터들을 최적화 한다. Particle Swarm Optimization과 같은 최적화 알고리즘을 통한 제안된 모델의 최적화 하고 최적화된 모델의 분류성능을 평가하기 위하여 다양한 머신 러닝 데이터 집합을 사용하여 평가한다.

영상처리 기법을 통한 RBFNN 패턴 분류기 기반 개선된 지문인식 시스템 설계 (Design of Fingerprints Identification Based on RBFNN Using Image Processing Techniques)

  • 배종수;오성권;김현기
    • 전기학회논문지
    • /
    • 제65권6호
    • /
    • pp.1060-1069
    • /
    • 2016
  • In this paper, we introduce the fingerprint recognition system based on Radial Basis Function Neural Network(RBFNN). Fingerprints are classified as four types(Whole, Arch, Right roof, Left roof). The preprocessing methods such as fast fourier transform, normalization, calculation of ridge's direction, filtering with gabor filter, binarization and rotation algorithm, are used in order to extract the features on fingerprint images and then those features are considered as the inputs of the network. RBFNN uses Fuzzy C-Means(FCM) clustering in the hidden layer and polynomial functions such as linear, quadratic, and modified quadratic are defined as connection weights of the network. Particle Swarm Optimization (PSO) algorithm optimizes a number of essential parameters needed to improve the accuracy of RBFNN. Those optimized parameters include the number of clusters and the fuzzification coefficient used in the FCM algorithm, and the orders of polynomial of networks. The performance evaluation of the proposed fingerprint recognition system is illustrated with the use of fingerprint data sets that are collected through Anguli program.

특징 추출과 검출 오차 최소화 알고리듬을 이용한 회전기계의 결함 진단 (Fault Diagnosis for Rotating Machine Using Feature Extraction and Minimum Detection Error Algorithm)

  • 정의필;조상진;이재열
    • 한국소음진동공학회논문집
    • /
    • 제16권1호
    • /
    • pp.27-33
    • /
    • 2006
  • Fault diagnosis and condition monitoring for rotating machines are important for efficiency and accident prevention. The process of fault diagnosis is to extract the feature of signals and to classify each state. Conventionally, fault diagnosis has been developed by combining signal processing techniques for spectral analysis and pattern recognition, however these methods are not able to diagnose correctly for certain rotating machines and some faulty phenomena. In this paper, we add a minimum detection error algorithm to the previous method to reduce detection error rate. Vibration signals of the induction motor are measured and divided into subband signals. Each subband signal is processed to obtain the RMS, standard deviation and the statistic data for constructing the feature extraction vectors. We make a study of the fault diagnosis system that the feature extraction vectors are applied to K-means clustering algorithm and minimum detection error algorithm.

Radial Basis Function Networks를 이용한 이중 임계값 방식의 음성구간 검출기 (Voice Activity Detection Algorithm base on Radial Basis Function Networks with Dual Threshold)

  • 김홍익;박승권
    • 한국통신학회논문지
    • /
    • 제29권12C호
    • /
    • pp.1660-1668
    • /
    • 2004
  • 본 논문에서는 간단한 구조, 적은 계산량과 안정된 빠른 수렴속도를 가진 RBF (Radial Basis Function) 신경회로망을 이용한 이중 임계값 방식의 음성구간 검출기 알고리즘을 제안하고 시뮬레이션을 통해 유용성을 확인하였다. 음성압축기에 사용되는 CELP (Code-Excited Linear Prediction) 파라미터들을 신경회로망 입력으로 하여 잡음에 강하게 반응하게 하였고, 음성구간 검출기의 성능향상을 위해 음성구간과 침묵구간에서 다른 임계값을 사용하는 이중 임계값 방식을 적용하였다. 실험 결과 이중 임계값을 이용한 RBF 신경망 음성구간 검출기는 G.729 Annex B 음성구간 검출기 보다 우수한 성능을 보였고, 기존의 MLP (Multi Layer Perceptron) 신경회로망을 이용한 음성구간 검출기와 비교하여 음성구간에서는 비슷한 성능을 보였으나 침묵구간에서 25% 정도의 성능향상을 보였다.

페이지랭크를 이용한 암환자의 이질적인 예후 유전자 식별 및 예후 예측 (Identification of Heterogeneous Prognostic Genes and Prediction of Cancer Outcome using PageRank)

  • 최종환;안재균
    • 정보과학회 논문지
    • /
    • 제45권1호
    • /
    • pp.61-68
    • /
    • 2018
  • 암환자의 예후 예측에 기여하는 유전자를 찾는 것은 환자에게 보다 적합한 치료를 제공하기 위한 도전 과제 중 하나이다. 예후 유전자를 찾기 위해 유전자 발현 데이터를 이용한 분류 모델 개발 연구가 많이 이루어지고 있다. 하지만 암의 이질성으로 인해 예후 예측의 정확도 향상에 한계가 있다는 문제가 있다. 본 논문에서는 유방암을 비롯한 6개의 암에 대한 암환자의 마이크로어레이 데이터와 생물학적 네트워크 데이터를 이용하여 페이지랭크 알고리즘을 통해 예후 유전자들을 식별하고, K-Nearest Neighbor 알고리즘을 사용하여 암 환자의 예후를 예측하는 모델을 제안한다. 그리고 페이지랭크를 사용하기 전에 K-Means 클러스터링으로 유전자 발현 패턴이 비슷한 샘플들을 나누어 이질성을 극복하고자 한다. 본 논문에서 제안한 방법은 기존의 유전자 바이오마커를 찾는 알고리즘보다 높은 예측 정확도를 보여 주었으며, GO 검증을 통해 클러스터에 특이적인 생물학적 기능을 확인하였다.

Identification of Fuzzy Inference System Based on Information Granulation

  • Huang, Wei;Ding, Lixin;Oh, Sung-Kwun;Jeong, Chang-Won;Joo, Su-Chong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권4호
    • /
    • pp.575-594
    • /
    • 2010
  • In this study, we propose a space search algorithm (SSA) and then introduce a hybrid optimization of fuzzy inference systems based on SSA and information granulation (IG). In comparison with "conventional" evolutionary algorithms (such as PSO), SSA leads no.t only to better search performance to find global optimization but is also more computationally effective when dealing with the optimization of the fuzzy models. In the hybrid optimization of fuzzy inference system, SSA is exploited to carry out the parametric optimization of the fuzzy model as well as to realize its structural optimization. IG realized with the aid of C-Means clustering helps determine the initial values of the apex parameters of the membership function of fuzzy model. The overall hybrid identification of fuzzy inference systems comes in the form of two optimization mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and polyno.mial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by SSA and C-Means while the parameter estimation is realized via SSA and a standard least square method. The evaluation of the performance of the proposed model was carried out by using four representative numerical examples such as No.n-linear function, gas furnace, NO.x emission process data, and Mackey-Glass time series. A comparative study of SSA and PSO demonstrates that SSA leads to improved performance both in terms of the quality of the model and the computing time required. The proposed model is also contrasted with the quality of some "conventional" fuzzy models already encountered in the literature.