• 제목/요약/키워드: k-means algorithms

검색결과 402건 처리시간 0.024초

자기공명 심장 영상의 좌심실 경계추출에서의 k 평균 군집화와 병합 알고리즘의 사용으로 인한 전처리 효과 (Preprocessing Effect by Using k-means Clustering and Merging .Algorithms in MR Cardiac Left Ventricle Segmentation)

  • Ik-Hwan Cho;Jung-Su Oh;Kyong-Sik Om;In-Chan Song;Kee-Hyun Chang;Dong-Seok Jeong
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권2호
    • /
    • pp.55-60
    • /
    • 2003
  • 심장 질환의 정량적 분석을 위해서 자기공명 심장 영상에서 좌심실의 경계를 추출하는 것이 중요하다. Snake 또는 active contour 모델은 좌심실 경계 추출을 위해서 사용되어 왔다. 그러나 이 모델을 사용하는데 있어서 좌심실의 경계선이 좌심실 내부에 생긴 결절 때문에 경계선이 지역최소값으로 빠져서 원하는 경계선에 수렴하지 못 할 수도 있다. 그러므로 본 논문에서는 active contour 모델의 성능을 향상시킬 수 있는 k 평균 군집화와 병합 알고리즘을 이용한 전처리 방법을 제안하였다. 제안된 방법으로 지역 최소값 수렴 문제를 해결함을 확인하였다.

An Improved Automated Spectral Clustering Algorithm

  • Xiaodan Lv
    • Journal of Information Processing Systems
    • /
    • 제20권2호
    • /
    • pp.185-199
    • /
    • 2024
  • In this paper, an improved automated spectral clustering (IASC) algorithm is proposed to address the limitations of the traditional spectral clustering (TSC) algorithm, particularly its inability to automatically determine the number of clusters. Firstly, a cluster number evaluation factor based on the optimal clustering principle is proposed. By iterating through different k values, the value corresponding to the largest evaluation factor was selected as the first-rank number of clusters. Secondly, the IASC algorithm adopts a density-sensitive distance to measure the similarity between the sample points. This rendered a high similarity to the data distributed in the same high-density area. Thirdly, to improve clustering accuracy, the IASC algorithm uses the cosine angle classification method instead of K-means to classify the eigenvectors. Six algorithms-K-means, fuzzy C-means, TSC, EIGENGAP, DBSCAN, and density peak-were compared with the proposed algorithm on six datasets. The results show that the IASC algorithm not only automatically determines the number of clusters but also obtains better clustering accuracy on both synthetic and UCI datasets.

질의 재구성 알고리즘의 검색성능을 측정하기 위한 새로운 평가 방법의 개발 (Development of New Retieval Performance Measures for Query Reformulation Algorithms)

  • 김남호
    • 한국정보처리학회논문지
    • /
    • 제4권4호
    • /
    • pp.963-972
    • /
    • 1997
  • 정보 검색에서 대부분의 질의 재구성 알고리즘들은 초기 입력 문서나 피드백 문을 이용 하여 질의를 재구성하므로, 질의 재구성 알고리즘의 검색 성능은 입력되는 문서들의 질 에 따라 달라진다. 본 연구에서는 질의 재구성 알고리즘의 입력 문서에 대한 성능 감도를 새로운 검색성능 평가방법을 개발하여 분석하였다. 또한 CIRA라고 불리는 새로운 평가기준을 개발하여 질의 재구성 사이의 성능 변화추이를 분석하였다. 세가지의 질의 재구성 알고리즘(질의나무 (query tree), DNF 방법, Dillon 방법)의 감도와 성능변화를 테시트 세트인 CACM, CISI, Medlars 상에서 분석하였다. 세 실험에서 질의나무가 가장 작은 CIRA를 취득했으며, 감도 분석에서는 비록 다른 알고리즘과 차이는 적으나 가장 높은감도를 나타냈다.

  • PDF

Cluster Analysis Algorithms Based on the Gradient Descent Procedure of a Fuzzy Objective Function

  • Rhee, Hyun-Sook;Oh, Kyung-Whan
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권6호
    • /
    • pp.191-196
    • /
    • 1997
  • Fuzzy clustering has been playing an important role in solving many problems. Fuzzy c-Means(FCM) algorithm is most frequently used for fuzzy clustering. But some fixed point of FCM algorithm, know as Tucker's counter example, is not a reasonable solution. Moreover, FCM algorithm is impossible to perform the on-line learning since it is basically a batch learning scheme. This paper presents unsupervised learning networks as an attempt to improve shortcomings of the conventional clustering algorithm. This model integrates optimization function of FCM algorithm into unsupervised learning networks. The learning rule of the proposed scheme is a result of formal derivation based on the gradient descent procedure of a fuzzy objective function. Using the result of formal derivation, two algorithms of fuzzy cluster analysis, the batch learning version and on-line learning version, are devised. They are tested on several data sets and compared with FCM. The experimental results show that the proposed algorithms find out the reasonable solution on Tucker's counter example.

  • PDF

다수의 값을 갖는 이산적 문제에 적용되는 Particle Swarm Optimization (Particle Swarm Optimizations to Solve Multi-Valued Discrete Problems)

  • 임동순
    • 산업경영시스템학회지
    • /
    • 제36권3호
    • /
    • pp.63-70
    • /
    • 2013
  • Many real world optimization problems are discrete and multi-valued. Meta heuristics including Genetic Algorithm and Particle Swarm Optimization have been effectively used to solve these multi-valued optimization problems. However, extensive comparative study on the performance of these algorithms is still required. In this study, performance of these algorithms is evaluated with multi-modal and multi-dimensional test functions. From the experimental results, it is shown that Discrete Particle Swarm Optimization (DPSO) provides better and more reliable solutions among the considered algorithms. Also, additional experiments shows that solution quality of DPSO is not lowered significantly when bit size representing a solution increases. It means that bit representation of multi-valued discrete numbers provides reliable solutions instead of becoming barrier to performance of DPSO.

융합 인공벌군집 데이터 클러스터링 방법 (Combined Artificial Bee Colony for Data Clustering)

  • 강범수;김성수
    • 산업경영시스템학회지
    • /
    • 제40권4호
    • /
    • pp.203-210
    • /
    • 2017
  • Data clustering is one of the most difficult and challenging problems and can be formally considered as a particular kind of NP-hard grouping problems. The K-means algorithm is one of the most popular and widely used clustering method because it is easy to implement and very efficient. However, it has high possibility to trap in local optimum and high variation of solutions with different initials for the large data set. Therefore, we need study efficient computational intelligence method to find the global optimal solution in data clustering problem within limited computational time. The objective of this paper is to propose a combined artificial bee colony (CABC) with K-means for initialization and finalization to find optimal solution that is effective on data clustering optimization problem. The artificial bee colony (ABC) is an algorithm motivated by the intelligent behavior exhibited by honeybees when searching for food. The performance of ABC is better than or similar to other population-based algorithms with the added advantage of employing fewer control parameters. Our proposed CABC method is able to provide near optimal solution within reasonable time to balance the converged and diversified searches. In this paper, the experiment and analysis of clustering problems demonstrate that CABC is a competitive approach comparing to previous partitioning approaches in satisfactory results with respect to solution quality. We validate the performance of CABC using Iris, Wine, Glass, Vowel, and Cloud UCI machine learning repository datasets comparing to previous studies by experiment and analysis. Our proposed KABCK (K-means+ABC+K-means) is better than ABCK (ABC+K-means), KABC (K-means+ABC), ABC, and K-means in our simulations.

DBSCAN 기반의 제조 공정 데이터 불량 위치의 검출 (Detection of the Defected Regions in Manufacturing Process Data using DBSCAN)

  • 최은석;김정훈;아지즈 나스리디노프;이상현;강정태;류관희
    • 한국콘텐츠학회논문지
    • /
    • 제17권7호
    • /
    • pp.182-192
    • /
    • 2017
  • 제조 산업은 국가 경제 성장의 원동력으로 그 중요성이 부각되고 있다. 이에 따라 제조 공정상에서 생성되는 제조 데이터 분석의 중요성 또한 조명 받고 있다. 본 논문에서는 PCB(Printed Circuit Board) 제조 공정에서 발생한 로그 데이터를 분석하여 PCB 상에서 빈번하게 발생하는 고장 영역에 대해서 작업자가 고장 영역을 직접 눈으로 볼 수 있도록 시각화하는 방법을 제안한다. 우선 고장 영역을 파악하기 위해서 PCB 공정 데이터 집합에 K-means, DB-SCAN 클러스터링 알고리즘을 적용하여 군집화 하였고, 두 알고리즘 중 더 정확한 고장 영역을 도출하는지 비교하였다. 또한 MVC(Model-View-Controller) 구조 시스템을 개발하여 실제 PCB 이미지 상에 클러스터링 결과를 출력하는 것으로 실제 고장영역을 눈으로 확인할 수 있도록 시각화하였다.

A Modeling of XML Document Preserving Object-Oriented Concepts

  • Kim, Chang Suk;Kim, Dae Su;Son, Dong Cheul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권2호
    • /
    • pp.129-134
    • /
    • 2004
  • XML is the new universal format for structured documents and data on the World Wide Web. As the Web becomes a major means of disseminating and sharing information and as the amount of XML data increases substantially, there are increased needs to manage and design such XML document in a novel yet efficient way. Moreover a demand of XML Schema(W3C XML Schema Spec.) that verifies XML document becomes increasing recently. However, XML Schema has a weak point for design because of its complication despite of various data and abundant expressiveness. Thus, it is difficult to design a complex document reflecting the usability, global and local facility and ability of expansion. This paper shows a simple way of modeling for XML document using a fundamental means for database design, the Entity-Relationship model. The design from the Entity-Relationship model to XML Schema can not be directly on account of discordance between the two models. So we present some algorithms to generate XML Schema from the Entity-Relationship model. The algorithms produce XML Schema codes using a hierarchical view representation. An important objective of this modeling is to preserve XML Schema's object-oriented concepts such as reusability, global and local ability. In addition to, implementation procedure and evaluation of the proposed design method are described.

Stock Price Prediction and Portfolio Selection Using Artificial Intelligence

  • Sandeep Patalay;Madhusudhan Rao Bandlamudi
    • Asia pacific journal of information systems
    • /
    • 제30권1호
    • /
    • pp.31-52
    • /
    • 2020
  • Stock markets are popular investment avenues to people who plan to receive premium returns compared to other financial instruments, but they are highly volatile and risky due to the complex financial dynamics and poor understanding of the market forces involved in the price determination. A system that can forecast, predict the stock prices and automatically create a portfolio of top performing stocks is of great value to individual investors who do not have sufficient knowledge to understand the complex dynamics involved in evaluating and predicting stock prices. In this paper the authors propose a Stock prediction, Portfolio Generation and Selection model based on Machine learning algorithms, Artificial neural networks (ANNs) are used for stock price prediction, Mathematical and Statistical techniques are used for Portfolio generation and Un-Supervised Machine learning based on K-Means Clustering algorithms are used for Portfolio Evaluation and Selection which take in to account the Portfolio Return and Risk in to consideration. The model presented here is limited to predicting stock prices on a long term basis as the inputs to the model are based on fundamental attributes and intrinsic value of the stock. The results of this study are quite encouraging as the stock prediction models are able predict stock prices at least a financial quarter in advance with an accuracy of around 90 percent and the portfolio selection classifiers are giving returns in excess of average market returns.

시퀀스 기반 위치추정 시스템을 위한 효율적 노드배치 알고리즘 (Efficient Node Deployment Algorithm for Sequence-Based Localization (SBL) Systems)

  • 박현홍;김윤학
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.658-663
    • /
    • 2018
  • 본 논문에서는 실내 위치 추정시스템에 주로 사용되는 시퀀스 기반 위치추정(Sequence-Based Localization, SBL) 알고리즘의 성능향상을 위한 노드배치 알고리즘에 대해 연구한다. 기존의 노드선택 또는 배치알고리즘은 다수의 타겟이 위치하는 공간의 중심값에 노드들을 위치시켜 성능향상을 이루는 반면, SBL에서는 위치추적 알고리즘 특성상 타겟을 에워싸는 공간에서의 노드배치가 효율적일 수 있음에 주목한다. 이를 실현하기 위해 K-means clustering 알고리즘을 통한 노드배치 가능 공간을 선정하고, 그 선정된 공간상의 효율적 노드위치를 찾기 위해 2분법을 활용하여, 설계 복잡도가 낮은 노드배치 알고리즘을 제시한다. 제안된 노드배치알고리즘은 다양한 모의실험을 통해 무작위 노드배치 알고리즘 대비 뛰어난 위치추정성능을 보여주며, 노드위치를 위한 전역탐색 (full search)과 비교하여, 상당히 낮은 설계복잡도를 유지하면서도 만족할 만한 성능을 보인다.