• Title/Summary/Keyword: k-means Algorithm

검색결과 1,367건 처리시간 0.029초

Fuzzy C-Means Algorithm을 이용한 휴대용 전자혀 시스템 설계 (Design of a Portable Electronic Tongue System using Fuzzy C-Means Algorithm)

  • 김정도;김동진;함유경;정여창;윤철오
    • 센서학회지
    • /
    • 제13권6호
    • /
    • pp.446-453
    • /
    • 2004
  • A portable electronic tongue (E-Tongue) system using an array of ion-selective electrode (ISE) and personal digital assistants (PDA) for recognizing and analyzing food and drink have been designed. By the employment of PDA, the complex algorithm such as fuzzy c-means algorithm (FCMA) could be used in E-Tongue, PUMA could iteratively solve the cluster centers of pre-determined standard patterns. And the membership between the standard patterns and unknown pattern could be analyzed easily by the present E-Tongue combined with PDA.

Nearest-Neighbors Based Weighted Method for the BOVW Applied to Image Classification

  • Xu, Mengxi;Sun, Quansen;Lu, Yingshu;Shen, Chenming
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1877-1885
    • /
    • 2015
  • This paper presents a new Nearest-Neighbors based weighted representation for images and weighted K-Nearest-Neighbors (WKNN) classifier to improve the precision of image classification using the Bag of Visual Words (BOVW) based models. Scale-invariant feature transform (SIFT) features are firstly extracted from images. Then, the K-means++ algorithm is adopted in place of the conventional K-means algorithm to generate a more effective visual dictionary. Furthermore, the histogram of visual words becomes more expressive by utilizing the proposed weighted vector quantization (WVQ). Finally, WKNN classifier is applied to enhance the properties of the classification task between images in which similar levels of background noise are present. Average precision and absolute change degree are calculated to assess the classification performance and the stability of K-means++ algorithm, respectively. Experimental results on three diverse datasets: Caltech-101, Caltech-256 and PASCAL VOC 2011 show that the proposed WVQ method and WKNN method further improve the performance of classification.

주성분 분석과 k 평균 알고리즘을 이용한 문서군집 방법 (Document Clustering Technique by K-means Algorithm and PCA)

  • 김우생;김수영
    • 한국정보통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.625-630
    • /
    • 2014
  • 컴퓨터의 발전과 인터넷의 급속한 발전으로 정보의 양이 폭발적으로 증가하게 되었고 이러한 방대한 양의 정보들은 대부분 문서 형태로 관리되기 때문에, 이들을 효과적으로 검색하고 처리하는 방법의 연구가 필요하다. 문서 군집은 문서간의 유사도를 바탕으로 서로 연관된 문서들을 군집화하여 대용량의 문서들을 자동으로 분류하고 검색하고 처리하는데 효율과 정확성을 증대시킨다. 본 논문은 특징 벡터 공간 상의 벡터들로 표현되는 문서들을 K 평균 알고리즘으로 군집화할 때, 주성분 분석을 사용하여 초기 시드점들을 선정함으로써 군집의 효율을 높이는 방법을 제안한다. 실험 결과를 통하여 제안하는 기법이 기존의 K 평균 알고리즘보다 좋은 결과를 얻을 수 있음을 보였다.

이동 Wi-Fi 환경에서 핑거프린트 기반의 Difference Means를 이용한 실내 위치추정 알고리즘 (The Indoor Localization Algorithm using the Difference Means based on Fingerprint in Moving Wi-Fi Environment)

  • 김태완;이동명
    • 한국통신학회논문지
    • /
    • 제41권11호
    • /
    • pp.1463-1471
    • /
    • 2016
  • 본 논문에서는 Wi-Fi환경에서 실내 위치추정의 성능 향상을 위해 이동 Wi-Fi 환경에서 핑거프린트 기반의 Difference Means를 이용한 실내 위치추정 알고리즘 (Algorithm using the Difference Means based on Fingerprint, DMFPA)을 제안하였다. 그리고 자체 개발한 실내 위치추정 시뮬레이터를 사용하여 제안한 DMFPA의 성능을 일반적인 핑거프린트 알고리즘 (OFPA), 가우시안 분포를 핑거프린트 알고리즘 (GDFPA)의 성능을 서로 비교하였다. 성능분석 항목은 각 참조구역에서의 평균위치추정 정확도, 발생된 오차의 평균오차 누적거리와 최대오차 누적거리, 그리고 평균측정시간으로 정의하였다.

새로운 모형기반 군집분석 알고리즘

  • 박정수;황현식
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 추계 학술발표회 논문집
    • /
    • pp.97-100
    • /
    • 2005
  • A new model-based clustering algorithm is proposed. The idea starts from the assumption that observations are realizations of Gaussian processes and so are correlated. With a special covariance structure, the posterior probability that an observation belongs to each cluster is computed using the ECM algorithm. A preliminary result of small-scale simulation study is given to compare with the k-means clustering algorithms.

  • PDF

빅데이터 K-평균 클러스터링을 위한 RHadoop 플랫폼 (RHadoop platform for K-Means clustering of big data)

  • 신지은;오윤식;임동훈
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권3호
    • /
    • pp.609-619
    • /
    • 2016
  • 본 논문에서는 대용량 데이터를 처리 및 분석하기 위해 RHadoop 플랫폼에서 실제 데이터와 모의 실험 데이터를 가지고 K-평균 클러스터링을 구현하고, MapReduce의 컴바이너 사용여부에 따른 처리 속도를 비교하고자 한다. 또한, K-평균 클러스터링에서 최적의 군집수 결정방법을 MapReduce 프로그램으로 구현하여 실제 데이터에 적용하고자 한다. 그리고 제안된 RHadoop 플랫폼의 확장 가능성을 보이기 위해 실제 데이터에서 R의 기본 패키지에서 kmeans() 함수와 bigmemory 패키지 상에서 유용한 bigkmeans() 함수와 처리 속도를 비교하고자 한다.

유전자 알고리듬과 K-평균법을 이용한 지역 분할 (Zone Clustering Using a Genetic Algorithm and K-Means)

  • 임동순;오현승
    • 한국경영과학회지
    • /
    • 제23권1호
    • /
    • pp.1-16
    • /
    • 1998
  • The zone clustering problem arising from several area such as deciding the optimal location of ambient measuring stations is to devide the 2-dimensional area into several sub areas in which included individual zone shows simimlar properties. In general, the optimal solution of this problem is very hard to obtain. Therefore, instead of finding an optimal solution, the generation of near optimal solution within the limited time is more meaningful. In this study, the combination of a genetic algorithm and the modified k-means method is used to obtain the near optimal solution. To exploit the genetic algorithm effectively, a representation of chromsomes and appropriate genetic operators are proposed. The k-means method which is originally devised to solve the object clustering problem is modified to improve the solutions obtained from the genetic algorithm. The experiment shows that the proposed method generates the near optimal solution efficiently.

  • PDF

4 방향 윤곽선 추적과 K-Means 알고리즘을 이용한 색조 도플러 초음파 영상에서 상환 동맥의 혈류 영역 추출 (Extraction of Blood Flow of Brachial Artery on Color Doppler Ultrasonography by Using 4-Directional Contour Tracking and K-Means Algorithm)

  • 박준성;김광백
    • 한국정보통신학회논문지
    • /
    • 제24권11호
    • /
    • pp.1411-1416
    • /
    • 2020
  • 본 논문에서는 색조 도플러 초음파 영상에서 K-Means 알고리즘을 적용하여 혈류 영역을 추출하는 방법을 제안한다. 제안된 방법에서는 ROI 영역을 추출하고, 추출된 ROI 영역에서 최대 명암도를 임계치로 설정한 이진화 기법을 적용하여 ROI 영역을 이진화한다. 이진화된 ROI 영역에서 4 방향 윤곽선 추적 기법을 적용하여 상완 동맥의 혈류 영역이 존재하는 사다리꼴 형태의 영역을 추출한다. 추출된 사다리꼴 형태의 영역에서 상완동맥의 혈류영역을 정확히 추출하기 위하여 K-Means 기반 양자화 기법을 적용한다. 실험에서 제안 된 방법은 현장 전문가의 검증을 거쳐 30건 중 28건 (93.3%)에서 혈류 영역을 성공적으로 추출하였다. 그리고 제안된 K-Means 기반 혈류 영역 추출 방법을 30개의 색조 도플러 초음파 영상에 적용하여 전문의가 제공한 상완동맥 혈류 영역과 제안된 방법을 비교 분석한 결과, 정확도가 평균적으로 94.27%로 나타났다.

K-Means 클러스터링을 적용한 향상된 CS-RANSAC 알고리즘 (Improved CS-RANSAC Algorithm Using K-Means Clustering)

  • 고승현;윤의녕;;조근식
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권6호
    • /
    • pp.315-320
    • /
    • 2017
  • 이미지를 기반으로 하는 증강현실 시스템에서 가상의 객체를 실제 영상에 저작할 때 생기는 이질감을 줄이기 위해서는 실제 영상에 저작된 가상객체의 방향과 위치에 대해 정확하게 추정을 해야 하며, 이때 호모그래피를 사용한다. 호모그래피를 추정하기 위해서는 SURF와 같은 특징점을 추출하고 추출된 특징점들을 통해 호모그래피 행렬을 추정한다. 호모그래피 행렬의 추정을 위해서 RANSAC 알고리즘이 주로 사용되고 있으며, 특히 RANSAC에 제약 조건 만족 문제(Constraint Satisfaction Problem)와 여기에 사용되는 제약조건을 동적으로 적용하여 속도와 정확도를 높인 DCS-RANSAC 알고리즘이 연구되었다. DCS-RANSAC 알고리즘에서 사용된 이미지 그룹 데이터는 수동적인 방법을 통해 직관적으로 분류되어 있지만 특징점 분포 패턴이 다양하지 않고, 이미지들을 정확하게 분류하기가 어려워서 이로 인해 알고리즘의 성능이 저하되는 경우가 있다. 따라서 본 논문에서는 K-means 클러스터링을 적용하여 이미지들을 자동으로 분류하고 각 이미지 그룹마다 각기 다른 제약조건을 적용하는 KCS-RANSAC 알고리즘을 제안한다. 제안하는 알고리즘은 머신러닝 기법인 K-means 클러스터링을 사용하여 전처리 단계에서 이미지를 특징점 분포 패턴에 따라 자동으로 분류하고, 분류된 이미지에 제약조건을 적용하여 알고리즘의 속도와 정확도를 향상시켰다. 실험 결과 본 논문에서 제안하는 KCS-RANSAC이 DCS-RANSAC 알고리즘에 비해 수행시간이 약 15% 단축되었고, 오차율은 약 35% 줄어들었으며, 참정보 비율은 약 14% 증가되었다.

세부 동작 기반 사물인터넷 서비스 분류 기법 개발 (Development of IoT Service Classification Method based on Service Operation Characteristic)

  • 조정훈;이화민;이대원
    • 인터넷정보학회논문지
    • /
    • 제19권2호
    • /
    • pp.17-26
    • /
    • 2018
  • 최근 사물인터넷 서비스의 등장 및 융합으로 통합 사물인터넷 서비스 플랫폼에 관한 다양한 연구가 진행되었다. 현재 사물인터넷 서비스는 서비스 제공자의 목적에 따라 독립적인 시스템으로 구축되어 유사한 서비스를 제공하는 서비스 간의 정보 교환 및 모듈 재사용이 불가능 하였다. 이에 본 연구에서는 통합 사물인터넷 플랫폼 환경을 제공하기 위하여 다양한 서비스들의 세부 동작 기반 서비스 분류 알고리즘을 제안한다. 구현을 통하여 상용화된 100여개의 사물인터넷 서비스를 분류 및 군집화를 진행하였으며 이를 기반으로 K-means알고리즘과 비교하여 제안하는 알고리즘의 성능을 평가하였다. 또한 표본 집단의 부족으로 발생하는 단일 클러스터를 방지하기 위하여 K-means 알고리즘을 활용하여 재 군집화를 진행하였다. 향후 연구로 기존의 서비스 표본 집단을 확대하고 현재 구현한 분류 시스템을 보다 빠르고 대량의 데이터 처리를 위하여 스파크를 활용할 예정이다.