• Title/Summary/Keyword: k-l turbulence model

Search Result 64, Processing Time 0.03 seconds

A Comparative Study of 2-Dimensional Turbulence Models for Thermal Discharge (2차원 온배수 난류모형의 비교연구)

  • Choi, Hung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.225-235
    • /
    • 1999
  • For a comparative evaluation of three turbulence models in the analyses of thermal discharge behavior into a crossflow, a 2-dimemsional near-field numerical model is developed. The selected models are k-$\varepsilon$ and k-ι turbulence models as a 2-equation turbulence model and a 4-equation turbulence model in which the transport equations for mean of the temperature fluctuation squared and its dissipation rate for the consideration of buoyancy production and turbulent heat flux terms are added to a k-$\varepsilon$ turbulence model. The developed models are applied to a steady flow in an open channel with simple geometry and the numerical results agree with the existing experimental data. Numerical results of buoyancy induced gravitational lateral spreading by 4-equation turbulence model agree with the experimental data better than those of 2-quation turbulence models. The flow patterns by 4 and 2-equation turbulence models are similar.

  • PDF

Numerical simulation of a toroidal single-phase natural circulation loop with a k-kL-ω transitional turbulence model

  • Yiwa Geng;Xiongbin Liu;Xiaotian Li;Yajun Zhang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.233-240
    • /
    • 2024
  • The wall friction correlations of oscillatory natural circulation loops are highly loop-specific, making it difficult to perform 1-D system simulations before obtaining specific experimental data. To better predict the friction characteristics, the nonlinear dynamics of a toroidal single-phase natural circulation loop were numerically investigated, and the transition effect was considered. The k-kL-ω transitional turbulence and k-ω SST turbulence models were used to compute the flow characteristics of the loop under different heating powers varying from 0.48 to 1.0 W/cm2, and the results of both models were compared with previous experiments. The mass flow rates and friction factors predicted by the k-kL-ω model showed a better agreement with the experimental data than the results of the k-ω SST model. The oscillation frequencies calculated using both models agreed well with the experimental data. The k-kL-ω transitional turbulence model provided better friction-factor predictions in oscillatory natural circulation loops because it can reproduce the temporal and spatial variation of the wall shear stress more accurately by capturing the movement of laminar, transition turbulent zones inside unstable natural circulation loops. This study shows that transition effects are a possible explanation for the highly loop-specific friction correlations observed in various oscillatory natural circulation loops.

Prediction of Turbulent Flow Over L-Shaped Riblet Surfaces with $k-\varepsilon$ Turbulence Models ($k-\varepsilon$ 난류모델에 의한 L-형 리브렛 주위 난류유동 예측)

  • Myeong, Hyeon-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.93-103
    • /
    • 1998
  • The paper reports the outcome of a numerical study of flow over idealized L-shaped ribleted surfaces with two-equation turbulence models. In the present study, the Launder and Sharma's k-.epsilon. turbulence model (LS model) is basically N employed, but with a little modification of the additional .epsilon.-source term without affecting its level under 2-dimensional straining in which the term has been calibrated. Compared to the original LS model, the present model has predicted greatly improved drag reduction behavior for this geometry. As a drag reduction mechanism, it is found that the skin-friction in the riblet valleys might be sufficient to overcome the skin-friction increase near the riblet tip. The present predicted results are in good agreement with the recent DN S ones by Choi et al. (1993): differences in the mean velocity prof ile and turbulence quantities are found to be limited to the riblet cavity region. It is also found that turbulent kinetic energy and Reynolds shear stress above the riblets are also reduced in drag-reducing configurations.

AERODYNAMIC ANALYSIS AND EXPERIMENTAL TEST FOR 4-BLADED VERTICAL AXIS WIND-TURBINE USING LARGE-EDDY SIMULATION (LES) TURBULENCE MODEL (LES 난류모델을 이용한 4엽형 수직축 풍력발전기 공력해석 및 실험)

  • Ryu, G.J.;Kim, D.H.;Choo, H.H.;Shim, J.P.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.11-17
    • /
    • 2012
  • In this study, aerodynamic analyses have been conducted for 4-Bladed Vertical-Axis Wind Turbine (VAWT) configuration and the results are compared with experimental data. Reynolds-averaged Navier-Stokes equation with LES turbulence model is solved for unsteady flow problems. In addition, the computation results by standard k-${\omega}$ and SST k-${\omega}$ turbulence models are also presented and compared. An experiment model of 4-Bladed VAWT model has been designed and constructed herein. Experimental tests for aerodynamic performance of the present VAWT model are practically conducted using the vehicle mounted testing system. Comparison results between the experiment and the computational fluid dynamics (CFD) analyses are presented in order to show the accuracy of CFD analyses using the different turbulent models.

Validation of Turbulence Models for Analysis of a Single-Phase Turbulent Natural Convection (단상 난류 자연대류 해석을 위한 난류 모델링 정확도 검증)

  • Song, Ik-Joon;Shin, Kyung-Jin;Kim, Jungwoo;Park, Ik Kyu;Lee, Seung-Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.682-686
    • /
    • 2015
  • The objective of this study is to validate the performance of the current $k-{\epsilon}$ turbulence model for a single-phase turbulent natural convection, which has been considered an important phenomenon in nuclear safety. As a result, the natural convection problems in the 2D and 3D cavities previously studied are calculated by using the ANSYS Fluent software. The present results show that the current $k-{\epsilon}$ turbulent model accounting for the buoyancy effect is in good agreement with the previous results for the natural convection problems in the 2D and 3D cavities although some improvements should be required to get better prediction.

BASE DRAG PREDICTION OF A SUPERSONIC MISSILE USING CFD (CFD를 이용한 초음속 유도탄 기저항력 예측)

  • Lee Bok-Jik
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.59-63
    • /
    • 2006
  • Accurate prediction of a supersonic missile base drag continues to defy even well-rounded CFD codes. In an effort to address the accuracy and predictability of the base drags, the influence of grid system and competitive turbulence models on the base drag is analyzed. Characteristics of some turbulence models is reviewed through incompressible turbulent flow over a flat plate, and performance for the base drag prediction of several turbulence models such as Baldwin-Loman(B-L), Spalart-Allmaras(S-A), k-$\varepsilon$, k-$\omega$ model is assessed. When compressibility correction is injected into the S-A model, prediction accuracy of the base drag is enhanced. The NSWC wind tunnel test data are utilized for comparison of CFD and semi-empirical codes on the accuracy of base drag predictability: they are about equal, but CFD tends to perform better. It is also found that, as angle of attack of a missile with control fins increases, even the best CFD analysis tool we have lacks the accuracy needed for the base drag prediction.

Validation of the Eddy Viscosity and Lange Wake Models using Measured Wake Flow Characteristics Behind a Large Wind Turbine Rotor (풍력터빈 후류 유동특성 측정 데이터를 이용한 Eddy Viscosity 및 Lange 후류모델의 예측 정확도 검증)

  • Jeon, Sang Hyeon;Go, Young Jun;Kim, Bum Suk;Huh, Jong Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • The wake effects behind wind turbines were investigated by using data from a Met Mast tower and the SCADA (Supervisory Control and Data Acquisition) system for a wind turbine. The results of the wake investigations and predicted values for the velocity deficit based on the eddy viscosity model were compared with the turbulence intensity from the Lange model. As a result, the velocity deficit and turbulence intensity of the wake increased as the free stream wind speed decreased. In addition, the magnitude of the velocity deficit for the center of the wake using the eddy viscosity model was overestimated while the turbulence intensity from the Lange model showed similarities with measured values.

Mean pressure prediction for the case of 3D unsteady turbulent flow past isolated prismatic cylinder

  • Ramesh, V.;Vengadesan, S.;Narasimhan, J.L.
    • Wind and Structures
    • /
    • v.9 no.5
    • /
    • pp.357-367
    • /
    • 2006
  • Unsteady 3D Reynolds Averaged Navier-Stokes (URANS) solver is used to simulate the turbulent flow past an isolated prismatic cylinder at Re=37,400. The aspect ratio of height to base width of the body is 5. The turbulence closure is achieved through a non-linear $k-{\varepsilon}$ model. The applicability of this model to predict unsteady forces associated with this flow is examined. The study shows that the present URANS solver with standard wall functions predicts all the major unsteady phenomena showing closer agreement with experiment. This investigation concludes that URANS simulations with the non-linear $k-{\varepsilon}$ model as a turbulence closure provides a promising alternative to LES with view to study flows having complex features.

Analysis of Empirical Constant of Eddy Viscosity by Zero- and One-Equation Turbulence Model in Wake Simulation

  • Park, Il Heum;Cho, Young Jun;Kim, Tae Yun;Lee, Moon Ock;Hwang, Sung Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.323-333
    • /
    • 2014
  • In this paper, the wakes behind a square cylinder were simulated using two kinds of different turbulence models for the eddy viscosity concept such as the zero- and the one-equation model in which the former is the mixing length model and the latter is the k-equation model. For comparison between numerical and analytical solutions, we employed three skill assessments: the correlation coefficient(r) for the similarity of the wake shape, the error of maximum velocity difference(EMVD) for the accuracy of wake velocity and the ratio of drag coefficient(RDC) for the pressure distribution around the structure. On the basis of the numerical results, the feasibility of each model for wake simulation was discussed and a suitable value for the empirical constant was suggested in these turbulence models. The zero-equation model, known as the simplest turbulence model, overestimated the EMVD and its absolute mean error(AME) for r, EMVD and RDC was ranging from 20.3 % to 56.3 % for all test. But the AME by the one-equation model was ranging from 3.4 % to 19.9 %. The predicted values of the one-equation model substantially agreed with the analytical solutions at the empirical mixing length scale $L=0.6b_{1/2}$ with the AME of 3.4 %. Therefore it was concluded that the one-equation model was suitable for the wake simulation behind a square cylinder when the empirical constant for eddy viscosity would be properly chosen.

Uncertainties In Base Drag Prediction of A Supersonic Missile (초음속 유도탄 기저항력 예측의 불확실성)

  • Ahn H. K.;Hong S. K.;Lee B. J.;Ahn C. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.47-51
    • /
    • 2004
  • Accurate Prediction of a supersonic missile base drag continues to defy even well-rounded CFD codes. In an effort to address the accuracy and predictability of the base drags, the influence of grid system and competitive turbulence models on the base drag is analyzed. Characteristics of some turbulence models is reviewed through incompressible turbulent flow over a flat plate, and performance for the base drag prediction of several turbulence models such as Baldwin-Lomax(B-L), Spalart-Allmaras(S-A), $\kappa-\epsilon$, $\kappa-\omega$ model is assessed. When compressibility correction is injected into the S-A model, prediction accuracy of the base drag is enhanced. The NSWC wind tunnel test data are utilized for comparison of CFD and semi-empirical codes on the accuracy of base drag predictability: they are about equal, but CFD tends to perform better. It is also found that, as angle of attack of a missile with control (ins increases, even the best CFD analysis tool we have lacks the accuracy needed for the base drag prediction.

  • PDF