In this study, the detection of rubber o-ring defects was carried out using k-fold cross validation and Support Vector Machine (SVM) algorithm. The data process was carried out in 3 steps. First, we proceeded with a frame alignment to eliminate unnecessary regions in the learning and secondly, we applied gray-scale changes for computational reduction. Finally, data processing was carried out using image augmentation to prevent data overfitting. After processing data, SVM algorithm was used to obtain normal and defect detection accuracy. In addition, we applied the SVM algorithm through the k-fold cross validation method to compare the classification accuracy. As a result, we obtain results that show better performance by applying the k-fold cross validation method.
최근 인공지능에 대한 관심이 높아짐에 따라 화학공정분야에서도 인공지능을 활용한 연구가 많아지고 있다. 그러나 인공지능 기반 모델이 충분히 일반화되지 않아 학습에 이용되지 않은 새로운 데이터에 대한 예측률이 떨어지는 과적합 현상이 빈번하게 일어나고 있으며, 교차검증은 과적합을 해결하는 방법 중 하나이다. 본 연구에서는 2,3-BDO 분리 공정 온도 예측 모델의 초매개변수 중에서 배치 개수와 반복횟수를 조정하기 위해 시계열 교차검증을 적용하고 일반적으로 사용되는 K 겹 교차검증과 비교하였다. 결과적으로 K 겹 교차검증을 사용했을 때 보다 시계열 교차검증 방식을 사용했을 때 MAPE는 0.61% 증가한 반면 RMSE는 9.06% 감소하였고 학습 시간은 198.29초 적게 소요되었다.
One Important problem in a cancer microarray study is to identify a set of genes from which a molecular prognostic indicator can be developed. In parallel with this problem is to validate the chosen set of genes. We develop in this note a K-fold cross validation procedure by combining a 'pre-validation' technique and a bootstrap resampling procedure in the Cox regression . The pre-validation technique predicts the microarray predictor of a case without having seen the true class level of the case. It was suggested by Tibshirani and Efron (2002) to avoid the possible over-fitting in the regression in which a microarray based predictor is employed. The bootstrap resampling procedure for the Cox regression was proposed by Sauerbrei and Schumacher (1992) as a means of overcoming the instability of a stepwise selection procedure. We apply this K-fold cross validation to the microarray data of 92 gastric cancers of which the experiment was conducted at Cancer Metastasis Research Center, Yonsei University. We also share some of our experience on the 'false positive' result due to the information leak.
본 연구는 토지피복 분류에 사용 가능한 ROI 생성 과정에서 기계학습 기반 교차검증을 활용하였다. 연구지역은 세종시를 포함한 2019년 10월 28일 단시기 KOMPSAT-3A 영상을 활용하였다. 연구 과정에서 4개의 밴드(Red, Green, Blue, Near Infra-red)를 독립변수로 교차검증 과정에서 학습시켰다. 또한 SVM의 4가지 기법(Linear, Polynomial, RBF, Sigmoid)을 활용하여 추출된 ROI를 기반으로 토지피복 분류를 실시하였다. 교차검증 과정에서 훈련된 3,500개의 데이터 중 1,813개의 데이터가 추출되었으며 건물, 도로, 그리고 초지에서 약 60%의 데이터가 제거되었다. 추출된 ROI를 기반으로 다른 SVM기법에 비해 SVM Linear 기법이 91.77%로 가장 높은 분류 정확도를 나타냈다. 분류 클래스 중 초지의 경우 산림과의 오분류가 가장 많이 발생하며 79.43%의 생산자 정확도로 가장 낮은 분류 정확도를 보여주었다. 연구 결과에 따라 교차검증에서 추출된 ROI는 산림, 수역, 그리고 농업지역에 대해서는 90%이상의 분류정확도를 보여주며 효과적인 분류결과를 도출할 수 있었으나, 80%의 분류정확도를 보여주는 건물, 도로, 나대지, 그리고 초지 지역을 분류하는 방법에 대해서는 추가적인 연구가 진행되어야 할 필요성이 존재한다.
스마트 그리드 안에서 고안된 스마트 미터는 우리가 사용하는 전력 신호를 실시간으로 데이터화해서 전력 공급단의 메인 서버로 전송한다. 이를 통해 전력 관리의 효율성은 증가한 반면, 사용자의 정보를 담은 데이터의 보안 문제가 새로운 위협으로 부상하였다. 본 논문은 스마트 미터에서 추출한 전력 데이터를 통해 가정 내 기기의 식별 및 기기별 사용패턴에 대한 추론을 보안 관점에서 해석함으로써 스마트 기기 환경에서 데이터 노출의 위협을 지적한다. 주성분분석(Principal Component Analysis)으로 데이터의 특징을 추출하였고 k-근접 이웃(k- Nearest Neighbor)분류기로 기기를 식별하고 기기상태를 추론하였으며, 검증방법으로는 10차 교차검증(10-fold Cross Validation)을 활용하였다.
본 논문에서는 개념설계 단계에서 주로 사용되는 통계적 중량 예측식 도출 방법에 관한 연구를 수행하였으며 Microsoft Excel을 이용해 이를 프로그램화하고 제트 여객기에 적용하여 검증하였다. 기존 중량 예측식들의 변수들을 참고하여 데이터베이스를 구축하였고 이를 사용하여 제트 여객기 날개 중량 예측식을 모델링하였다. 모델의 과적합 문제를 해결하기 위해 K-fold cross validation 방법을 사용하여 모델을 평가하였다.
본 연구는 도시침수 위험기준이 산정되지 않은 지역의 예·경보 기준을 예측하기 위해 유역특성 자료와 피해이력 기반으로 산정된 한계강우량을 활용하여 도시침수 위험기준을 추정하는 모델을 검토하였다. 위험기준 추정모델은 머신러닝 알고리즘의 하나인 Support Vector Machine을 이용하여 설계하였으며, 학습자료는 지역별 한계강우량과 유역특성으로 구성하였다. 학습자료는 정규화 한 후 SVM 알고리즘에 적용하였으며, SVM에 적용시 Leave-One-Out과 K-fold 교차검증 알고리즘을 이용하여 절대평균오차와 표준편차를 계산한 후 모델의 성능을 평가하였다. Leave-One-Out의 경우 표준편차가 작은 모델이 최적모델로 선정되었으며, K-fold의 경우 fold의 개수가 적은 모델이 선정되었다. 선정된 모델의 지속시간별 평균 정확도는 80% 이상으로 나타나 침수 위험기준 추정을 위해 SVM을 활용가능 할 것으로 판단된다.
Journal of the Korean Data and Information Science Society
/
제24권1호
/
pp.125-133
/
2013
이 논문에서는 호흡곤란을 주호소로 내원한 668명의 환자를 대상으로 11개 혈액검사 결과를 이용하여 퇴원여부를 결정하는 벌점 이항 로지스틱 회귀 기반 통계모형을 유도하였다. 구체적으로 $L^2$ 벌점에 근거한 능형 모형과 $L^1$ 벌점에 근거한 라소 모형을 고려하였다. 이 모형의 예측력 비교 대상으로는 일반 로지스틱 회귀의 11개 전체 변수를 사용한 모형과 변수선택된 모형이 사용되었다. 10-묶음 교차타당성 (10-fold cross-validation) 비교 결과 능형 모형의 예측력이 우수한 것으로 나타났다.
International Journal of Computer Science & Network Security
/
제23권11호
/
pp.190-194
/
2023
By looking the importance of communication, data delivery and access in various sectors including governmental, business and individual for any kind of data, it becomes mandatory to identify faults and flaws during cyber communication. To protect personal, governmental and business data from being misused from numerous advanced attacks, there is the need of cyber security. The information security provides massive protection to both the host machine as well as network. The learning methods are used for analyzing as well as preventing various attacks. Machine learning is one of the branch of Artificial Intelligence that plays a potential learning techniques to detect the cyber-attacks. In the proposed methodology, the Decision Tree (DT) which is also a kind of supervised learning model, is combined with the different cross-validation method to determine the accuracy and the execution time to identify the cyber-attacks from a very recent dataset of different network attack activities of network traffic in the UNSW-NB15 dataset. It is a hybrid method in which different types of attributes including Gini Index and Entropy of DT model has been implemented separately to identify the most accurate procedure to detect intrusion with respect to the execution time. The different DT methodologies including DT using Gini Index, DT using train-split method and DT using information entropy along with their respective subdivision such as using K-Fold validation, using Stratified K-Fold validation are implemented.
Erdal, Hamit;Erdal, Mursel;Simsek, Osman;Erdal, Halil Ibrahim
Computers and Concrete
/
제21권4호
/
pp.407-417
/
2018
Concrete which is a composite material is one of the most important construction materials. Compressive strength is a commonly used parameter for the assessment of concrete quality. Accurate prediction of concrete compressive strength is an important issue. In this study, we utilized an experimental procedure for the assessment of concrete quality. Firstly, the concrete mix was prepared according to C 20 type concrete, and slump of fresh concrete was about 20 cm. After the placement of fresh concrete to formworks, compaction was achieved using a vibrating screed. After 28 day period, a total of 100 core samples having 75 mm diameter were extracted. On the core samples pulse velocity determination tests and compressive strength tests were performed. Besides, Windsor probe penetration tests and Schmidt hammer tests were also performed. After setting up the data set, twelve artificial intelligence (AI) models compared for predicting the concrete compressive strength. These models can be divided into three categories (i) Functions (i.e., Linear Regression, Simple Linear Regression, Multilayer Perceptron, Support Vector Regression), (ii) Lazy-Learning Algorithms (i.e., IBk Linear NN Search, KStar, Locally Weighted Learning) (iii) Tree-Based Learning Algorithms (i.e., Decision Stump, Model Trees Regression, Random Forest, Random Tree, Reduced Error Pruning Tree). Four evaluation processes, four validation implements (i.e., 10-fold cross validation, 5-fold cross validation, 10% split sample validation & 20% split sample validation) are used to examine the performance of predictive models. This study shows that machine learning regression techniques are promising tools for predicting compressive strength of concrete.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.