• 제목/요약/키워드: k-fold 교차타당법

검색결과 2건 처리시간 0.015초

인체측정조사에서 측정곤란부위 예측을 위한 의사결정나무 추천 모형 탐지에 관한 연구 (A Study on Exploration of the Recommended Model of Decision Tree to Predict a Hard-to-Measure Mesurement in Anthropometric Survey)

  • 최종후;김선경
    • 응용통계연구
    • /
    • 제22권5호
    • /
    • pp.923-935
    • /
    • 2009
  • 본 연구는 의사결정나무의 추천 모형 선택을 위한 비교실험에 초점을 두고 있다. 의사결정나무 모형은 구축된 모형에 기반을 두고 미래 관측치에 대한 예측 기능을 수행하게 될 것이므로 구축된 모형이 아무리 정치(精緻)하다고 하더라도 일반화의 성질을 충족시키지 못하면 실제성이 없게 된다. 따라서 본 연구는 교차타당성 검토를 통해 일반화의 성질을 충족시키면서 우수한 예측력을 갖는 추천 모형을 탐지하는 절차를 연구하는 데에 초점을 맞추고 있다. 사례 연구로 인체측정자료를 사용하여 측정곤란부위 예측을 위한 의사결정나무 추천 모형을 탐지한다. 그 결과 CART 모형 이 추천 모형으로 탐지되었다.

희박한 데이터에 대한 선형판별분석에서 최적의 차원 수 결정 (Optimal number of dimensions in linear discriminant analysis for sparse data)

  • 신가인;김재직
    • 응용통계연구
    • /
    • 제30권6호
    • /
    • pp.867-876
    • /
    • 2017
  • 오늘날 관찰값의 개수에 비해 변수의 개수가 큰 희박한 데이터셋은 다양한 분야에서 쉽게 찾아볼 수 있고, 통계학에서 그러한 데이터셋에 대한 분석은 하나의 도전이 되어 왔다. 그러한 희박한 데이터에 대한 분류를 위해 판별분석모형들이 최근에 개발되었다. 그러한 판별분석모형들 중 하나의 접근법은 그룹들을 잘 구분해주는 차원들을 찾기를 시도하는데, 그러한 차원들은 데이터의 변수의 개수보다 훨씬 적다. 그러한 모형에서 차원의 수는 예측과 자료의 시각화를 위해 중요한 역할을 하고 일반적으로 K-묶음 교차타당성 방법에 의해 결정된다. 하지만, 희박한 데이터의 경우 K-묶음 교차타당성 방법 적용시 각 묶음에 대한 관찰값의 개수가 매우 적을 수 있기 때문에 교차타당성에 의한 차원 수 결정은 신뢰성이 떨어질 수 있다. 따라서, 본 연구에서는 그러한 희박판별분석모형에 의해 찾아진 차원들에서 각 그룹들의 평균 간의 표준화된 거리에 근거한 측도를 사용하여 최적의 차원 수를 결정하는 방법을 제안하고, 제안된 방법은 모의실험을 통해 검증된다.