• Title/Summary/Keyword: k-flow

Search Result 28,789, Processing Time 0.053 seconds

Flow Entry & Vacancy of Flow table in SDN (SDN에서 Flow table의 Flow Entry 및 Vacancy)

  • Yoo, Seung-Eon;Lym, Hwan-Hee;Kim, Kyung-Tae;Youn, Hee-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.01a
    • /
    • pp.43-44
    • /
    • 2018
  • SDN(Software Defined Network)는 데이터 부분과 컨트롤 부분을 분리하여 하나의 컨트롤러가 모든 데이터를 담당하는 기술이다. SDN에서 표준 프로토콜 역할을 하는 OpenFlow가 있으며 컨트롤러가 이 OpenFlow 프로토콜을 사용하여 Flow 테이블의 항목을 추가하고 삭제하도록 OpenFlow 스위치를 제어한다. OpneFlow 스위치는 하나 이상의 Flow table을 사용하여 조회하고 채널을 톨해 컨트롤러에 전달한다. 본 논문에서는 Flow Entry 구성도와 Flow가 Flow table에 도달하는 확률, Flow Entry를 분류하는 Vacancy에 대해 설명하였다.

  • PDF

Flow Analyses using FLUENT 5.4 Code for the Bi-directional Flow Tube (FLUENT 5.4 코드를 이용한 양방향 유동 튜브에 대한 유동해석)

  • Kang, Kyoung-Ho;Yun, Byung-Jo;Baek, Won-Pil
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.934-938
    • /
    • 2003
  • Flow analyses using FLUENT 5.4 code were performed to validate the application of the local bidirectional flow tube in case of water and air flow. In this study, sensitivity studies have been performed to optimize the design features of the bi-directional flow tube which can be applied for the various experimental conditions. 2-dimensional axisymmetric steady state flow analyses have been performed. By calculating the differential pressure at both the front and the rear hole of the flow tube, K values were evaluated. The K values show good linearity regardless of the tube sizes and the Re numbers in both water and air flow. And system pressure and water subcooling didn’'t affect the K values. Under the elevated pressure of 80bar with 80K water subcooling, the K value indicates a similar trend with the case of 2bar with 80K water subcooling.

  • PDF

A Two-Dimensional Study of Transonic Flow Characteristics in Steam Control Valve for Power Plant

  • Yonezawa, Koichi;Terachi, Yoshinori;Nakajima, Toru;Tsujimoto, Yoshinobu;Tezuka, Kenichi;Mori, Michitsugu;Morita, Ryo;Inada, Fumio
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.58-66
    • /
    • 2010
  • A steam control valve is used to control the flow from the steam generator to the steam turbine in thermal and nuclear power plants. During startup and shutdown of the plant, the steam control valve is operated under a partial flow conditions. In such conditions, the valve opening is small and the pressure deference across the valve is large. As a result, the flow downstream of the valve is composed of separated unsteady transonic jets. Such flow patterns often cause undesirable large unsteady fluid force on the valve head and downstream pipe system. In the present study, various flow patterns are investigated in order to understand the characteristics of the unsteady flow around the valve. Experiments are carried out with simplified two-dimensional valve models. Two-dimensional unsteady flow simulations are conducted in order to understand the experimental results in detail. Scale effects on the flow characteristics are also examined. Results show three types of oscillating flow pattern and three types of static flow patterns.

Experimental Investigation on Separated Flows of Axial Flow Stator and Diagonal Flow Rotor

  • Kinoue, Yoichi;Shiomi, Norimasa;Setoguchi, Toshiaki;Jin, Yingzi
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.223-231
    • /
    • 2009
  • Experimental investigations were conducted for the internal flows of the axial flow stator and diagonal flow rotor. Corner separation near the hub surface and the suction surface of stator blade are mainly focused on. For the design flow rate, the values of the axial velocity and the total pressure at stator outlet decrease between near the suction surface and near the hub surface by the influence of corner wall. For the flow rate of 80-90% of the design flow rate, the corner separation of the stator between the suction surface and the hub surface is observed, which becomes widely spread for 80% of the design flow rate. At rotor outlet for 81% of the design flow rate, the low axial velocity region grows between near the suction surface of rotor and the casing surface because of the tip leakage flow of the rotor.

sFlow Monitoring for a Virtualization Testbed in KREONET (KREONET에서 가상 환경을 위한 sFlow 모니터링 시스템)

  • Fitriyani, Norma Latif;Kim, Jae-rin;Song, Wang-Cheol;Cho, Buseung;Kim, Sunghae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.234-237
    • /
    • 2014
  • This paper provides insights into the sFlow monitoring system of OF@KREONET. OF@KREONET is software defined network (SDN) testbed adapted by KREONET (Korea Research Environment Open NETwork). OF@KREONET uses SDN-based network virtualization to slice the network among multiple concurrent experimenter. Flow Monitoring of OF@KREONET using sFlow. sFlow and OpenFlow can be used to provide an integrated flow monitoring system where OpenFlow controller can be used to define flows to be monitored by sFlow. OF@KREONET flow monitoring system supports monitoring of per slice FlowSpace. An Experimental can monitor his/her own FlowSpace while network administrator can monitor all spaces.

Hydraulic Behavior and Characteristic Analysis by Steady & Unsteady Flow Analysis of Natural Stream (하도 합류부의 정류.부정류해석에 따른 수리학적 변화 특성 분석)

  • Ahn, Seung-Seop;Yim, Dong-Hee;Park, Ro-Sam;Kwak, Tae-Hwa
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.957-968
    • /
    • 2008
  • The purpose of this study is to analyze the characteristics of hydraulic behavior of the natural channel flow according to the temporal classification mode, and thus propose the hydraulic analysis method for future channel design. For analysis, the temporal flow characteristics of the channel section was divided into the steady flow and the unsteady flow. For hydraulic analysis, the HEC-RAS model, which is a one-dimensional numerical analysis model, and the SMS-RAM2 model, which is a two-dimensional model, were used and the factors used for analysis of hydraulic characteristics were flood elevation and flow rate. The flow state was analyzed on the basis of the one-dimensional steady flow and unsteady flow for review. In the unsteady flow analysis the flow rate changed by $(-)0.16%{\sim}(+)0.26%$, and the flood elevation varied by $(-)0.35%{\sim}(+)0.51%$ as compared to the values in the steady flow analysis. Given these results, in the one-dimensional flow analysis based on the unsteady flow the flood elevation and flow rate were greater than when the analysis was done on the basis of the steady flow. The flow state was analyzed on the basis of the two-dimensional steady flow and unsteady flow. In the unsteady flow analysis the flow rate varied by $(-)0.16%{\sim}(+)1.08%$, and the flood elevation changed by $(-)0.24%{\sim}(+)0.41%$ as compared to the values in the steady flow analysis. Given these analysis results, in the two dimensional flow analysis based on the unsteady flow, the flood elevation and flow rate were greater than when the analysis was done on the basis of the steady flow.

The Possibility of Daily Flow Data Generation from 8-Day Intervals Measured Flow Data for Calibrating Watershed Model (유역모형 구축을 위한 8일간격 유량측정자료의 일유량 확장 가능성)

  • Kim, Sangdan;Kang, Du Kee;Kim, Moon Su;Shin, Hyun Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.64-71
    • /
    • 2007
  • In this study daily flow data is constructed from 8-day intervals flow data which has been measured by Nakdong River Water Environmental Laboratory. TANK model is used to expand 8-day intervals flow data into daily flow data. Using the Sequential quadratic programing, TANK model is auto-calibrated with daily precipitation and 8-day interval flow data. Generated and measured daily surface flow, ground water flow data and ground water recharge are shown to be in a good agreement. From this result, it is thought that this method has the potential to provide daily flow data for calibrating an watershed model such as SWAT.

Reduction of the Refrigerant-Induced Noise from the Transition of Flow Pattern by Decreasing Tube Diameter

  • Takushima, Akira;Han, Hyung-Suk;Jung, Wei-Bong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.2
    • /
    • pp.37-44
    • /
    • 2009
  • It is well known that a refrigerant-induced noise is caused by two-phase flow in the indoor unit of a heat pump air-conditioner. Especially when the flow pattern in a pipe is intermittent flow, the irregular noise occurs frequently. But it is very difficult to avoid this kind of the noise for the application of air-conditioner. Therefore, in this research, the flow patterns at two-phase flow state in a pipe of the indoor unit for the air-conditioner are researched using cycle simulator at typical cycle conditions. In order to find the relationship between refrigerant-induced noise and flow pattern, the noise patterns are investigated with respect to the estimated flow pattern from the various flow pattern maps. Base on the estimations of the flow patterns by those maps, the refrigerant-induced noise is evaluated as decreasing tube diameter, which can transit the flow pattern from slug to annular flow.

Experimental Observations of Boiling and Flow Evolution in a Coiled Tube

  • Ye, P.;Peng, X.F.;Wu, H.L.;Meng, M.;Gong, Y. Eric
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • A sequence of visually experimental observations was conducted to investigate the flow boiling and two-phase flow in a coiled tube. Different boiling modes and bubble dynamical evolutions were identified for better recognizing the phenomena and understanding the two-phase flow evolution and heat transfer mechanisms. The dissolved gases and remained vapor would serve as foreign nucleation sites, and together with the effect of buoyancy, centrifugal force and liquid flow, these also induce very different flow boiling nucleation, boiling modes, bubble dynamical behavior, and further the boiling heat transfer performance. Bubbly flow, plug flow, slug flow, stratified/wavy flow and annular flow were observed during the boiling process in the coiled tube. Particularly the effects of flow reconstructing and thermal non-equilibrium release in the bends were noted and discussed with the physical understanding. Coupled with the effects of the buoyancy, centrifugal force and inertia or momentum ratio of the two fluids, the flow reconstructing and thermal non-equilibrium release effects have critical importance for flow pattern in the bends and flow evolution in next straight sections.

An Efficient Method on Constructing $ extsc{k}$-Minimal Path Sets for Flow Network Reliability

  • Lee, Seung-Min;Park, Dong-Ho
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.3
    • /
    • pp.297-306
    • /
    • 2000
  • An efficient method of constructing $textsc{k}$-minimal path sets to evaluate the reliability of a flow network is presented. The network is considered to be in a functioning state if it can transmit a maximum flow which is greater than or equal to a specified amount of flow, $textsc{k}$say, and a $textsc{k}$-minimal path set is a minimal set of branches that satisfies the given flow constraint. In this paper, under the assumption that minimal path sets of the network are known, we generate composite paths by adding only a minimal set of branches at each iteration to get $textsc{k}$-minimal path sets after possibly the fewest composition, and compute maximum flow of composite paths using only minimal path sets. Thereby we greatly reduce the possible occurrence of redundant composite paths throughout the process and efficiently compute the maximum flow of composite paths generated. Numerical examples illustrate the method.

  • PDF