• Title/Summary/Keyword: k-NN 분류

Search Result 191, Processing Time 0.025 seconds

Development of Interactive Content Services through an Intelligent IoT Mirror System (지능형 IoT 미러 시스템을 활용한 인터랙티브 콘텐츠 서비스 구현)

  • Jung, Wonseok;Seo, Jeongwook
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.472-477
    • /
    • 2018
  • In this paper, we develop interactive content services for preventing depression of users through an intelligent Internet of Things(IoT) mirror system. For interactive content services, an IoT mirror device measures attention and meditation data from an EEG headset device and also measures facial expression data such as "sad", "angery", "disgust", "neutral", " happy", and "surprise" classified by a multi-layer perceptron algorithm through an webcam. Then, it sends the measured data to an oneM2M-compliant IoT server. Based on the collected data in the IoT server, a machine learning model is built to classify three levels of depression (RED, YELLOW, and GREEN) given by a proposed merge labeling method. It was verified that the k-nearest neighbor (k-NN) model could achieve about 93% of accuracy by experimental results. In addition, according to the classified level, a social network service agent sent a corresponding alert message to the family, friends and social workers. Thus, we were able to provide an interactive content service between users and caregivers.

Pattern Classification using the Nearest Desion Method in Input Pattern and its k Neighbor Prototypes (입력패턴과 그 k 근방 원형상에서 최근접 결정법칙에 의한 패턴식별)

  • Kim, Eung-Kyeu
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1853-1854
    • /
    • 2008
  • 본 논문에서는 입력패턴과 그 k 근방 원형상에 잇어서 노름 평균에 기초한 최근접 결정법칙에 의한 패턴식별법을 제안한다. 이 방법은 식별경계 근방의 원형상에 있어서 분산의 차에 의한 가중치를 고려하기 때문에 패턴의 수가 적을 때 입력패턴을 정확하게 분류할 때 사용될 수 있다. 본 방법의 유효성을 평가하기 위해 인공적인 패턴과 실제패턴에 대해 k-NN 등 기존방법과 제안하는 방법을 적용하여 식별률에 의한 평가를 행한 결과, 특히 원형상의 분포가 희박한 경우 제안하는 방법이 기존방법에 비해 높은 식별률을 나타냈다.

  • PDF

The Design of Feature Selection Classifier based on Physiological Signal for Emotion Detection (감성판별을 위한 생체신호기반 특징선택 분류기 설계)

  • Lee, JeeEun;Yoo, Sun K.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.206-216
    • /
    • 2013
  • The emotion plays a critical role in human's daily life including learning, action, decision and communication. In this paper, emotion discrimination classifier is designed to reduce system complexity through reduced selection of dominant features from biosignals. The photoplethysmography(PPG), skin temperature, skin conductance, fontal and parietal electroencephalography(EEG) signals were measured during 4 types of movie watching associated with the induction of neutral, sad, fear joy emotions. The genetic algorithm with support vector machine(SVM) based fitness function was designed to determine dominant features among 24 parameters extracted from measured biosignals. It shows maximum classification accuracy of 96.4%, which is 17% higher than that of SVM alone. The minimum error features selected are the mean and NN50 of heart rate variability from PPG signal, the mean of PPG induced pulse transit time, the mean of skin resistance, and ${\delta}$ and ${\beta}$ frequency band powers of parietal EEG. The combination of parietal EEG, PPG, and skin resistance is recommendable in high accuracy instrumentation, while the combinational use of PPG and skin conductance(79% accuracy) is affordable in simplified instrumentation.

Comparative Study of Knowledge Extraction on the Industrial Application (산업분야에서의 지식 정보 추출에 대한 비교연구)

  • Woo, Young-Kwang;Kim, Sung-Sin;Bae, Hyun;Woo, Kwang-Bang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.251-254
    • /
    • 2003
  • 데이터는 어떤 특성을 나타내는 언어적 또는 수치적 값들의 표현이다. 이러한 데이터들을 목적에 따라 구성한 것이 정보이며, 문제 해결이나 패턴 분류, 또는 의사 결정을 위해 정보들간의 관계를 규칙으로 체계화하는 것이 지식이다. 현재 대부분의 산업 분야에서 시스템에 대한 이해를 높이고 시스템의 성능을 향상시키기 위해 지식을 추출하고, 적용시키는 작업들이 활발히 이루어지고 있다. 지식 정보의 추출은 지식의 획득, 표현, 구현의 단계로 구성되며 이렇게 추출된 지식 정보는 규칙으로 도출된다. 본 논문에서는 여러 산업 분야에 걸쳐 다양하게 적용되는 지식 정보 추출 방법들에 대해 그 영역별로 알아보고 여러 시험 데이터들과 실제 시스템에 클러스터링(CL), 입력공간 분할(ISP), 뉴로-퍼지(NF), 신경망(NN), 확장 행렬(EM) 등의 방법들을 적용시킨 결과들을 비교 분석하고자 한다.

  • PDF

Random Forest Based Abnormal ECG Dichotomization using Linear and Nonlinear Feature Extraction (선형-비선형 특징추출에 의한 비정상 심전도 신호의 랜덤포레스트 기반 분류)

  • Kim, Hye-Jin;Kim, Byeong-Nam;Jang, Won-Seuk;Yoo, Sun-K.
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.61-67
    • /
    • 2016
  • This paper presented a method for random forest based the arrhythmia classification using both heart rate (HR) and heart rate variability (HRV) features. We analyzed the MIT-BIH arrhythmia database which contains half-hour ECG recorded from 48 subjects. This study included not only the linear features but also non-linear features for the improvement of classification performance. We classified abnormal ECG using mean_NN (mean of heart rate), SD1/SD2 (geometrical feature of poincare HRV plot), SE (spectral entropy), pNN100 (percentage of a heart rate longer than 100 ms) affecting accurate classification among combined of linear and nonlinear features. We compared our proposed method with Neural Networks to evaluate the accuracy of the algorithm. When we used the features extracted from the HRV as an input variable for classifier, random forest used only the most contributed variable for classification unlike the neural networks. The characteristics of random forest enable the dimensionality reduction of the input variables, increase a efficiency of classifier and can be obtained faster, 11.1% higher accuracy than the neural networks.

Multiple Discriminative DNNs for I-Vector Based Open-Set Language Recognition (I-벡터 기반 오픈세트 언어 인식을 위한 다중 판별 DNN)

  • Kang, Woo Hyun;Cho, Won Ik;Kang, Tae Gyoon;Kim, Nam Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.958-964
    • /
    • 2016
  • In this paper, we propose an i-vector based language recognition system to identify the spoken language of the speaker, which uses multiple discriminative deep neural network (DNN) models analogous to the multi-class support vector machine (SVM) classification system. The proposed model was trained and tested using the i-vectors included in the NIST 2015 i-vector Machine Learning Challenge database, and shown to outperform the conventional language recognition methods such as cosine distance, SVM and softmax NN classifier in open-set experiments.

Fault Detection of Unbalanced Cycle Signal Data Using SOM-based Feature Signal Extraction Method (SOM기반 특징 신호 추출 기법을 이용한 불균형 주기 신호의 이상 탐지)

  • Kim, Song-Ee;Kang, Ji-Hoon;Park, Jong-Hyuck;Kim, Sung-Shick;Baek, Jun-Geol
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.2
    • /
    • pp.79-90
    • /
    • 2012
  • In this paper, a feature signal extraction method is proposed in order to enhance the low performance of fault detection caused by unbalanced data which denotes the situations when severe disparity exists between the numbers of class instances. Most of the cyclic signals gathered during the process are recognized as normal, while only a few signals are regarded as fault; the majorities of cyclic signals data are unbalanced data. SOM(Self-Organizing Map)-based feature signal extraction method is considered to fix the adverse effects caused by unbalanced data. The weight neurons, mapped to the every node of SOM grid, are extracted as the feature signals of both class data which are used as a reference data set for fault detection. kNN(k-Nearest Neighbor) and SVM(Support Vector Machine) are considered to make fault detection models with comparisons to Hotelling's $T^2$ Control Chart, the most widely used method for fault detection. Experiments are conducted by using simulated process signals which resembles the frequent cyclic signals in semiconductor manufacturing.

Fingerprint Classification using Singular Points and Gabor filter (특이점과 Gabor 필터를 이용한 효과적인 지문 이미지 분류)

  • Lee, Min-Seob;Lee, Chul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.321-324
    • /
    • 2002
  • In this paper, we introduce a new approach to fingerprint classification based on both singular points and gabor features. We find singular points of fingerprint image by using squared direction field and Poincare index. Then, the input fingerprint image can be classified into one of 5 classes using the number of singular points and their location. However, it is often impossible to classify the fingerprint image because the numbers and the position of the singular points are not correct due to noise. In this case Gabor features are extracted from unclassified images using Gator filter and they are classified by using k-NN classifier. This method has been tested on the NIST-4 database. The experimental results show that the proposed method is reliable.

  • PDF

PD Measurement and Pattern Discrimination of Stator Coil for Traction Motor according to Different Defects (결함에 따른 견인전동기 고정자 코일의 부분방전측정 및 패턴분류)

  • Jang, Dong-Uk;Park, Hyun-June;Park, Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.221-222
    • /
    • 2005
  • In this paper, application of NN (Neural Network) as a method of pattern discrimination of PD(partial discharge) which occurs at the stator coil of traction motor was studied. For PD data acquisition, three defective models are manufactured such as internal discharge model, slot discharge model and surface discharge model. PD data for recognition were acquired from PD detector and DAQ board which is able to analysis the PD signal and perform the pattern discrimination. Statistical distributions and parameters are calculated to discriminate PD sources. And also these statistical distribution parameters are applied to classify PD sources by BP and has good recognition rate on the discharge sources.

  • PDF

Comparison of Classification and Convolution algorithm in Condition assessment of the Failure Modes in Rotational equipments with varying speed (회전수가 변하는 기기의 상태 진단에 있어서 특성 기반 분류 알고리즘과 합성곱 기반 알고리즘의 예측 정확도 비교)

  • Ki-Yeong Moon;Se-Yun Hwang;Jang-Hyun Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.301-301
    • /
    • 2022
  • 본 연구는 운영 조건이 달라짐에 따라 회전수가 변하는 기기의 정상적 가동 여부와 고장 종류를 판별하기 위한 인공지능 알고리즘의 적용을 다루고 있다. 회전수가 변하는 장비로부터 계측된 상태 모니터링 센서의 신호는 비정상(non-stationary)적 특성이 있으므로, 상태 신호의 한계치가 고장 판별의 기준이 되기 어렵다는 점을 해결하고자 하였다. 정상 가동 여부는 이상 감지에 효율적인 오토인코더 및 기계학습 알고리즘을 적용하였으며, 고장 종류 판별에는 기계학습법과 합성곱 기반의 심층학습 방법을 적용하였다. 변하는 회전수와 연계된 주파수의 비정상적 시계열도 적절한 고장 특징 (Feature)로 대변될 수 있도록 시간 및 주파수 영역에서 특징 벡터를 구성할 수 있음을 예제로 설명하였다. 차원 축소 및 카이 제곱 기법을 적용하여 최적의 특징 벡터를 추출하여 기계학습의 분류 알고리즘이 비정상적 회전 신호를 가진 장비의 고장 예측에 활용될 수 있음을 보였다. 이 과정에서 k-NN(k-Nearest Neighbor), SVM(Support Vector Machine), Random Forest의 기계학습 알고리즘을 적용하였다. 또한 시계열 기반의 오토인코더 및 CNN (Convolution Neural Network) 적용하여 이상 감지와 고장진단을 수행한 결과를 비교하여 제시하였다.

  • PDF