• 제목/요약/키워드: k-NN 분류

검색결과 191건 처리시간 0.042초

학습문헌집합에 기 부여된 범주의 정확성과 문헌 범주화 성능 (The Effect of the Quality of Pre-Assigned Subject Categories on the Text Categorization Performance)

  • 심경;정영미
    • 정보관리학회지
    • /
    • 제23권2호
    • /
    • pp.265-285
    • /
    • 2006
  • 문헌범주화에서는 학습문헌집합에 부여된 주제범주의 정확성이 일정 수준을 가진다고 가정한다. 그러나, 이는 실제 문헌집단에 대한 지식이 없이 이루어진 가정이다. 본 연구는 실제 문헌집단에서 기 부여된 주제범주의 정확성의 수준을 알아보고, 학습문헌집합에 기 부여된 주제범주의 정확도와 문헌범주화 성능과의 관계를 확인하려고 시도하였다. 특히, 학습문헌집합에 부여된 주제범주의 질을 수작업 재색인을 통하여 향상시킴으로써 어느 정도까지 범주화 성능을 향상시킬 수 있는가를 파악하고자 하였다. 이를 위하여 과학기술분야의 1,150 초록 레코드 1,150건을 전문가 집단을 활용하여 재색인한 후, 15개의 중복문헌을 제거하고 907개의 학습문헌집합과 227개의 실험문헌집합으로 나누었다. 이들을 초기문헌집단, Recat-1, Recat-2의 재 색인 이전과 이후 문헌집단의 범주화 성능을 kNN 분류기를 이용하여 비교하였다. 초기문헌집단의 범주부여 평균 정확성은 16%였으며, 이 문헌집단의 범주화 성능은 $F_1$값으로 17%였다. 반면, 주제범주의 정확성을 향상시킨 Recat-1 집단은 $F_1$값 61%로 초기문헌집단의 성능을 3.6배나 향상시켰다.

신경망 기반의 텍스처 분류기를 이용한 스크래치 검출 (Film Line Scratch Detection using a Neural Network based Texture Classifier)

  • 김경태;김은이
    • 전자공학회논문지CI
    • /
    • 제43권6호
    • /
    • pp.26-33
    • /
    • 2006
  • 영화복원은 오래된 필름으로부터 손상된 영역을 자동으로 검출하여 복원하는 것이다. 영화복원은 고화질의 멀티미디어 서비스를 위한 필수작업이기 때문에, 현재 많은 연구자들로부터 관심을 받고 있다. 필름은 flick, dust, 스크래치 등의 원인으로 손상이 이루어지는데, 이 중 가장 주된 요인은 스크래치이다. 스크래치로 손상된 데이터의 복원연구는 지난 몇 년간 활발히 수행되고 있다. 스크래치 복원을 위해서는 위치 및 길이 등의 기준에 따라 나타나는 다양한 종류의 스크래치들을 모두 검출할 수 있어야만 한다. 본 논문에서는 영화의 각 프레임 상에 나타나는 다양한 종류의 모든 스크래치를 자동으로 검출할 수 있는 신경망 기반의 검출 방법을 제안한다. 다양한 높이와 폭을 가진 스크래치들을 검출하기 위해 pyramid를 이용하여 입력 영상은 다양한 해상도의 영상으로 변환된다. 각 변환된 영상에 대하여 신경망기반의 텍스처 분류기를 이용하여 스크래치와 비스크래치의 영역으로 분류한다. 이때, 처리속도의 향상을 위해 에지로 분류된 화소에 대하여만 신경망을 적용한다. 제안된 방법의 평가를 위해 다양한 종류의 스크래치를 가진 영화 및 애니메이션 데이터에 대해 실험이 이루어졌고, 그 결과, 제안된 방법의 강건함과 효율성이 입증되었다.

기계학습 기법을 이용한 전자게시판 질문 자동 분류 (An Automatic Question Routing System using Machine Learning)

  • 최형림;류광렬;강재호;신종일;이창섭
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2003년도 춘계학술대회
    • /
    • pp.313-318
    • /
    • 2003
  • 인터넷의 급격한 발전과 광범위한 보급에 따라 과거 전화, 서신 또는 직접방문을 통하여 해결하던 고객상담의 상당부분은 인터넷을 이용한 전자우편 및 전자게시판을 이용하는 방향으로 꾸준히 대치되고 있다. 인터넷을 통한 고객과의 접촉방식의 대부분을 차지하는 전자우편과 전자게시판은, 기존의 방식 특히 전화에 비하여 즉각적인 응답을 기대하기가 어렵다는 측면이 고객에게는 가장 큰 불만사항이 되고 있다. 본 논문에서는 문서로 이루어진 전자우편 또는 전자게시판의 고객 상담 내용을 기계학습의 분류기법을 활용하여 담당자를 자동으로 선정함으로써 보다 신속히 고객의 요구에 반응할 수 있는 효과적인 방법을 제안한다. 실제 수집한 다년간의 데이터를 기반으로 다양한 분류기법의 성능을 비교 평가하였으며, 그 결과 k-NN을 이용한 기법이 성능 및 활용도 측면에서 유리함을 보였다 또한, 인터넷을 통한 질문의 경우 상당 수준의 오탈자 및 띄어쓰기 오류를 내포하고 있는데, 바이그램을 이용한 문서처리방법을 이용함으로써 이러한 상황에 효과적으로 대처할 수 있으며, 바이그램으로 문서 처리 시 발생할 수 있는 시스템의 부담을 큰 성능의 저하 없이 최소화하기 위하여 자주 등장한 단어만을 선정하는 방안이 실용성이 있음을 확인하였다.

  • PDF

XAI 를 활용한 기업 부도예측 분류모델 연구 (A Study on Classification Models for Predicting Bankruptcy using XAI)

  • 김지홍;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.571-573
    • /
    • 2022
  • 최근 금융기관에서는 축적된 금융 빅데이터를 활용하여 차별화된 서비스를 강화하고 있다. 기업고객에 투자하기 위해서는 보다 정밀한 기업분석이 필요하다. 본 연구는 대만기업 6,819개의 95개 재무데이터를 가지고, 비대칭 데이터 문제해결, 데이터 표준화 등 데이터 전처리 작업을 하였다. 해당 데이터는 로지스틱 회기, SVM, K-NN, 나이브 베이즈, 의사결정나무, 랜덤포레스트 등 9가지 분류모델에 5겹 교차검증을 적용하여 학습한 후 모델 성능을 비교하였다. 이 중에서 성능이 가장 우수한 분류모델을 선택하여 예측 결정 이유를 판단하고자 설명 가능한 인공지능(XAI)을 적용하여 예측 결과에 대한 설명을 부여하여 이를 분석하였다. 본 연구를 통해 데이터 전처리에서부터 모델 예측 결과 설명에 이르는 분류예측모델의 전주기를 자동화하는 시스템을 제시하고자 한다.

특징선택 기법에 기반한 UNSW-NB15 데이터셋의 분류 성능 개선 (Classification Performance Improvement of UNSW-NB15 Dataset Based on Feature Selection)

  • 이대범;서재현
    • 한국융합학회논문지
    • /
    • 제10권5호
    • /
    • pp.35-42
    • /
    • 2019
  • 최근 사물인터넷과 다양한 웨어러블 기기들이 등장하면서 인터넷 기술은 보다 편리하게 정보를 얻고 업무를 수행하는데 기여하고 있으나 인터넷이 다양한 부분에 이용되면서 공격에 노출되는 Attack Surface 지점이 증가하고 있으며 개인정보 획득, 위조, 사이버 테러 등 부당한 이익을 취하기 위한 목적의 네트워크 침입 시도 또한 증가하고 있다. 본 논문에서는 네트워크에서 발생하는 트래픽에서 비정상적인 행동을 분류하기 위한 희소클래스의 분류 성능을 개선하는 특징선택을 제안한다. UNSW-NB15 데이터셋은 다른 클래스에 비해 상대적으로 적은 인스턴스를 가지는 희소클래스 불균형 문제가 발생하며 이를 제거하기 위해 언더샘플링 방법을 사용한다. 학습 알고리즘으로 SVM, k-NN 및 decision tree를 사용하고 훈련과 검증을 통하여 탐지 정확도와 RMSE가 우수한 조합의 서브셋들을 추출한다. 서브셋들은 래퍼 기반의 실험을 통해 재현률 98%이상의 유효성을 입증하였으며 DT_PSO 방법이 가장 우수한 성능을 보였다.

단백질 서열의 n-Gram 자질을 이용한 세포내 위치 예측 (Classification Protein Subcellular Locations Using n-Gram Features)

  • 김진숙
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2007년도 추계 종합학술대회 논문집
    • /
    • pp.12-16
    • /
    • 2007
  • 단백질의 기능은 그 기능을 발휘하는 세포내의 위치와 밀접한 연관이 있다. 따라서 새로운 단백질의 서열이 밝혀지면 이 단백질의 세포내 위치를 규명하는 것은 생물학적으로 매우 중요한 일이다. 이 논문에서는 단백질의 n-그램과 kNN (k-Nearest Neighbor) 분류기를 이용한 새로운 세포내 위치예측 방법을 다룬다. 이 방법은 입력 단백질 서열과 가장 유사한 가중치를 가지는 k개의 단백질이 가지는 세포내 위치 정보들을 취합하여 입력 단백질의 세포내 위치를 추정한다. 단백질간의 유사도 가중치는 두 단백질서열의 5-그램 자질의 유사도를 비교하여 계산된다. 단백질의 세포내 위치예측 정확도를 검증하기 위해 SWISS-PROT 단백질 데이터베이스로 부터 세포내 위치가 알려진 51,885개의 서열을 추출하여 대용량 테스트 컬렉션을 구축하였으며, 다른 연구자들이 제공하는 또 하나의 소용량 테스트 컬렉션을 실험에 사용하였다. 이 논문에서 사용한 예측방법은 대용량 테스트컬렉션에 대해 약 93%의 정확도를 보여주었으며, 소용량 데스트컬렉션을 이용하여 이전 실험과 비교하였을 때도 이 방법이 다른 시스템에 비해 성능이 우월함을 알 수 있었다.

  • PDF

Density Profile 추출 방법에 따른 염색체 분류정확도 비교분석 (Comparison of Accuracy for Chromosome Classification using Different Feature Extraction Methods based on Density Profile)

  • 최광원;송혜정;김종대;김유섭;이완연;박찬영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.226-229
    • /
    • 2010
  • 본 연구에서는 다양한 density profile 특징추출에 기반한 염색체 자동분류방법들의 성능을 비교분석하였다. density profile은 염색체의 밴드패턴을 가장 잘 표현한 특징으로 염색체의 중심축을 구성하는 화소들의 밝기 값을 추출하는 방법이다. 염색체의 밴드패턴은 염색체의 끝단까지를 잘 표현해주어야만 정확한 염색체번호를 확인할 수 있다. 따라서 염색체의 중심축을 추출하여 염색체 끝단까지 확장 처리한 방법에 대한 성능을 확인하였다. 염색체 중심축에 위치한 화소만을 이용한 프로파일은 잡음에 민감할 수 있으므로 이를 해결하기 위하여 염색체의 중심축에 대한 화소 값 대신 주변 밝기 값들에 대한 평균을 이용한 국소평균방법과 중심축의 수직라인 상에 존재하는 화소 값들에 대한 평균을 구한 수직평균방법을 비교하였다. 분류알고리즘은 k-NN을 사용하였고, 실험데이터는 (주)Gendix 로부터 제공받은 임상적으로 정상인 100명(남자 50명, 여자 50명)으로부터 추출한 4600개의 염색체 영상을 훈련데이터와 테스트데이터로 각각 50%씩 랜덤하게 분리하여 실험하였다. 실험결과 중심축을 확장하고 수직평균에 대한 프로파일을 특징으로 추출하여 분류한 경우가 가장 좋은 성능을 보였다.

  • PDF

스마트 기기 환경에서 전력 신호 분석을 통한 프라이버시 침해 위협 (Threatening privacy by identifying appliances and the pattern of the usage from electric signal data)

  • 조재연;윤지원
    • 정보보호학회논문지
    • /
    • 제25권5호
    • /
    • pp.1001-1009
    • /
    • 2015
  • 스마트 그리드 안에서 고안된 스마트 미터는 우리가 사용하는 전력 신호를 실시간으로 데이터화해서 전력 공급단의 메인 서버로 전송한다. 이를 통해 전력 관리의 효율성은 증가한 반면, 사용자의 정보를 담은 데이터의 보안 문제가 새로운 위협으로 부상하였다. 본 논문은 스마트 미터에서 추출한 전력 데이터를 통해 가정 내 기기의 식별 및 기기별 사용패턴에 대한 추론을 보안 관점에서 해석함으로써 스마트 기기 환경에서 데이터 노출의 위협을 지적한다. 주성분분석(Principal Component Analysis)으로 데이터의 특징을 추출하였고 k-근접 이웃(k- Nearest Neighbor)분류기로 기기를 식별하고 기기상태를 추론하였으며, 검증방법으로는 10차 교차검증(10-fold Cross Validation)을 활용하였다.

안드로이드 OS에서 앱 설치 의사결정 지원을 위한 악성 앱 분류 시스템 (Malware Classification System to Support Decision Making of App Installation on Android OS)

  • 유홍렬;장윤;권태경
    • 정보과학회 논문지
    • /
    • 제42권12호
    • /
    • pp.1611-1622
    • /
    • 2015
  • 안드로이드 시스템은 권한 기반의 접근제어 기능을 제공하고, 사용자로 하여금 앱 설치시 앱이 가진 권한을 통해 설치여부를 판단하도록 요구하고 있지만, 대부분의 사용자는 이것을 무시하거나 모르고 지나치는 경향이 있다. 따라서 사용자가 이와 같은 중요한 단계에 주어진 역할을 직관적으로 수행할 수 있도록 하기 위한 개선된 방법이 필요하다. 본 논문에서는 퍼미션 기반 접근제어 시스템을 위해 사용자의 의사결정을 즉각 지원할 수 있는 새로운 기법을 기계학습에 기반하여 연구하고 제안한다. 구체적으로 K-최근접 이웃 알고리즘을 목적에 맞게 수정하여 악성앱 가능성 판단에 대한 연구를 진행하였으며, 특성으로 안드로이드의 권한 152개를 사용했다. 실험 결과 약 93.5%의 정확도를 보였으며 유사한 알고리즘, 혹은 특성으로 권한만을 사용한 기존의 연구결과에 비해 우수한 분류 결과를 보였다. 이는 K-최근접 이웃 알고리즘의 범주 선택시 가중합을 반영했기 때문이다. 본 연구결과는 사용자가 권한을 검토하고 설치할 때 의사결정에 도움을 줄 수 있을 것으로 기대된다.

퍼지 추론을 이용한 소수 문서의 대표 키워드 추출에 대한 유용성 평가 (Evaluation on the usefulness of Representative Keyword Extraction from Few Documents through Fuzzy Inference)

  • 노순억;김병만;신윤식;임은기
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.247-249
    • /
    • 2002
  • 본 논문은 퍼지 추론을 이용하여 소수문서로부터의 대표 용어들을 추출하고 가중치를 부여한 기존 방법의 유용성을 평가하고자 GIS (Generalized Instance Set) 알고리즘에 이를 적용시켜 보았다. GIS 는 학습 문서 집합에 대한 플러스터링 과정을 통해 문서 그룹들을 생성하고 이들에 대한 선형 분류기들을 유도한 뒤 k-NN 알고리즘을 적용하는 방법이다. GIS의 일반화(generalization) 과정에 Rocchio, Widrow-Hoff 및 퍼지 추론을 이용한 방법을 적용시켜 문서 분류 성능을 비교하였다. 긍정적 문서 집합에 대한 실험에서 비교적 우수한 성능 향상을 보여줌으로써 퍼지 추론을 이용한 방법의 유용성을 확인 할 수 있었다.

  • PDF