• Title/Summary/Keyword: k-Modes

Search Result 4,360, Processing Time 0.025 seconds

Modal-based model reduction and vibration control for uncertain piezoelectric flexible structures

  • Yalan, Xu;Jianjun, Chen
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.489-504
    • /
    • 2008
  • In piezoelectric flexible structures, the contribution of vibration modes to the dynamic response of system may change with the location of piezoelectric actuator patches, which means that the ability of actuators to control vibration modes should be taken into account in the development of modal reduction model. The spatial $H_2$ norm of modes, which serves as a measure of the intensity of modes to system dynamical response, is used to pick up the modes included in the reduction model. Based on the reduction model, the paper develops the state-space representation for uncertain flexible tructures with piezoelectric material as non-collocated actuators/sensors in the modal space, taking into account uncertainties due to modal parameters variation and unmodeled residual modes. In order to suppress the vibration of the structure, a dynamic output feedback control law is designed by imultaneously considering the conflicting performance specifications, such as robust stability, transient response requirement, disturbance rejection, actuator saturation constraints. Based on linear matrix inequality, the vibration control design is converted into a linear convex optimization problem. The simulation results show how the influence of vibration modes on the dynamical response of structure varies with the location of piezoelectric actuators, why the uncertainties should be considered in the reductiom model to avoid exciting high-frequency modes in the non-collcated vibration control, and the possiblity that the conflicting performance specifications are dealt with simultaneously.

Sliding and rocking response of rigid blocks due to horizontal excitations

  • Yang, Yeong-Bin;Hung, Hsiao-Hui;He, Meng-Ju
    • Structural Engineering and Mechanics
    • /
    • v.9 no.1
    • /
    • pp.1-16
    • /
    • 2000
  • To study the dynamic response of a rigid block standing unrestrained on a rigid foundation which shakes horizontally, four modes of motion can be identified, i.e., rest, slide, rock, and slide and rock. The occurrence of each of these four modes and the transition between any two modes depend on the parametric values specified, the initial conditions, and the magnitude of ground acceleration. In this paper, a general two-dimensional theory is presented for dealing with the various modes of a free-standing rigid block, considering in particular the impact occurring during the rocking motion. Through selection of proper values for the system parameters, the occurrence of each of the four modes and the transition between different modes are demonstrated in the numerical examples.

Lasing of Coupled Guided Modes in Modified Hollow Hexagonal Semiconductor Cavities

  • Moon, Hee-Jong;Lee, Jin-Woong;Hyun, Kyung-Sook;Jeong, Dae Cheol
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.377-381
    • /
    • 2014
  • Coupled guided modes, proposed in various modified hollow hexagonal cavities each attached internally to a hexagon, were demonstrated by investigating the laser oscillations in semiconductor cavities. The mode spacing between two adjacent lasing peaks decreased as the size of the internal hexagon increased, due to the increased round-trip length of the coupled guided modes. The linear dependency of the inverse mode spacing to the calculated round-trip length strongly confirmed the lasing of the coupled guided modes. The proposed modes in common-sized external cavities showed resonance structure that could be adjusted widely by controlling the size of the internal hexagon.

Parallel k-Modes Algorithm for Spark Framework (스파크 프레임워크를 위한 병렬적 k-Modes 알고리즘)

  • Chung, Jaehwa
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.10
    • /
    • pp.487-492
    • /
    • 2017
  • Clustering is a technique which is used to measure similarities between data in big data analysis and data mining field. Among various clustering methods, k-Modes algorithm is representatively used for categorical data. To increase the performance of iterative-centric tasks such as k-Modes, a distributed and concurrent framework Spark has been received great attention recently because it overcomes the limitation of Hadoop. Spark provides an environment that can process large amount of data in main memory using the concept of abstract objects called RDD. Spark provides Mllib, a dedicated library for machine learning, but Mllib only includes k-means that can process only continuous data, so there is a limitation that categorical data processing is impossible. In this paper, we design RDD for k-Modes algorithm for categorical data clustering in spark environment and implement an algorithm that can operate effectively. Experiments show that the proposed algorithm increases linearly in the spark environment.

Reliability Analysis of Mechanical Component with Multiple Failure Modes (다수의 고장모드를 가지는 기계부품의 신뢰성 분석)

  • Chang, Mu Seong;Choi, Byung Oh;Kang, Bo Sik;Park, Jong Won;Lee, Choong Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1169-1174
    • /
    • 2013
  • Most products are indeed governed by multiple failure modes. However, there are few cases in which reliability analysis applies to only one failure mode at a time. Furthermore, reliability data do not include information about failure modes, or the reliability analysis is performed using a representative failure mode. The Weibull shape parameter for failure modes is more important than one for products in the reliability qualification test. This paper presents reliability analysis methods for a mechanical component with multiple failure modes. These methods include the competing failure modes (CFM) method and the mixed Weibull method. Pneumatic cylinder test data with three failure modes are presented to estimate the shape parameter for each separate failure mode. In addition, reliability measures (B10 life, characteristic life) of the pneumatic cylinder considering three failure modes were compared with those assuming a single failure mode.

Dynamic characteristics and wind-induced vibration coefficients of purlin-sheet roofs

  • Zhang, Yingying;Song, Xiaoguang;Zhang, Qilin
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1039-1054
    • /
    • 2016
  • This paper presents the dynamic characteristics analysis of the purlin-sheet roofs by the random vibration theories. Results show that the natural vibration frequency of the purlin-sheet roof is low, while the frequencies and mode distributions are very intensive. The random vibration theory should be used for the dynamic characteristics of the roof structures due to complex vibration response. Among the first 20th vibration modes, the first vibration mode is mainly the deformations of purlins, while the rest modes are the overall deformations of the roof. In the following 30th modes, it mainly performs unilateral local deformations of the roof. The frequency distribution of the first 20th modes varies significantly while those of the following 30th modes are relatively sensitive. For different parts, the contributions of vibration modes on the vibration response are different. For the part far from the roof ridge, only considering the first 5th modes can reflect the wind-induced vibration response. For the part near the ridge, at least the first 12 modes should be considered, due to complex vibration response. The wind vibration coefficients of the upwind side are slightly higher than that of the leeward side. Finally, the corresponding wind vibration coefficient for the purlin-sheet roof is proposed.

Vibration Characteristics of Compaction Table for Expendable Pattern Casting Process through Changing Vibration Modes (소실모형주조용 조형장치의 진동특성 평가)

  • Lee, Kang-Rae;Choe, Kyeong-Hwan;Cho, Gue-Serb;Lee, Kyong-Whoan;Kim, Myung-Ho;Rim, Kyung-Hwa;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.24 no.5
    • /
    • pp.273-280
    • /
    • 2004
  • Vibrational motions of the compaction table were investigated to select the optimal operation conditions of sand filling and compaction for the EPC process. Their modes were measured at the nine points of the table with changing the relative rotation angles between the two eccentric mass vibrators which were attached parallel beneath the table. Well-defined vibration modes were measured at the center of the table but those of left and right sides of the table were distorted regardless of rotational angle differences. The distortion of vibration modes at both sides of the table were caused by the moment generated by offset positions of two eccentric masses. It was found that the uniform vibration modes would be gathered by controlling the relative distances between the rotating axis and the center of gravity in the compaction system at the various conditions of vibration modes and rotational angle differences.

Vector and Scalar Modes in Coherent Mode Representation of Electromagnetic Beams

  • Kim, Ki-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.103-106
    • /
    • 2008
  • It is shown that the two mode representations, one with vector modes and the other with scalar modes, for the cross spectral density matrices of electromagnetic beams are equivalent to each other. In particular, we suggest a method to find the vector modes from the scalar modes and formulate the cross spectral density matrix as a correlation matrix.

Predicting the failure modes of monotonically loaded reinforced concrete exterior beam-column joints

  • Bakir, Pelin G.;Boduroglu, Hasan M.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.307-330
    • /
    • 2002
  • This study aims at postulating a simple methodology for predicting the failure modes of monotonically loaded reinforced concrete beam-column joints. All the factors that affect the failure modes of joints are discussed in detail using an experimental database of monotonically loaded exterior beam-column joints. The relative contributions of the strut and truss mechanisms to joint shear strength are determined based on the test results. A simple design equation for the beam longitudinal reinforcement ratio for joints with low, medium and high amount of stirrups is developed. The factors influencing the failure modes of monotonically loaded exterior beam-column joints are investigated in detail. Design charts that predict the failure modes of exterior beam-column connections both with and without stirrups are developed. Experimental data are compared with the design charts. The results show that the simple methodology gives very accurate predictions of the failure modes.

Damage identification of belt conveyor support structure using periodic and isolated local vibration modes

  • Hornarbakhsh, Amin;Nagayama, Tomonori;Rana, Shohel;Tominaga, Tomonori;Hisazumi, Kazumasa;Kanno, Ryoichi
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.787-806
    • /
    • 2015
  • Due to corrosion, a large number of belt conveyors support structure in industrial plants have deteriorated. Severe corrosion may result in collapse of the structures. Therefore, practical and effective structural assessment techniques are needed. In this paper, damage identification methods based on two specific local vibration modes, named periodic and isolated local vibration modes, are proposed. The identification methods utilize the facts that support structures have many identical members repeated along the belt conveyor and there exist some local modes within a small frequency range where vibrations of these identical members are much larger than those of the other members. When one of these identical members is damaged, this member no longer vibrates in those modes. Instead, the member vibrates alone in an isolated mode with a lower frequency. A damage identification method based on frequencies comparison of these vibration modes and another method based on amplitude comparison of the periodic local vibration mode are explained. These methods do not require the baseline measurement records of undamaged structure. The methods is capable of detecting multiple damages simultaneously. The applicability of the methods is experimentally validated with a laboratory model and a real belt-conveyor support structure.