• Title/Summary/Keyword: k-Means 알고리즘

Search Result 773, Processing Time 0.031 seconds

Korean Named Entity Recognition and Classification using Word Embedding Features (Word Embedding 자질을 이용한 한국어 개체명 인식 및 분류)

  • Choi, Yunsu;Cha, Jeongwon
    • Journal of KIISE
    • /
    • v.43 no.6
    • /
    • pp.678-685
    • /
    • 2016
  • Named Entity Recognition and Classification (NERC) is a task for recognition and classification of named entities such as a person's name, location, and organization. There have been various studies carried out on Korean NERC, but they have some problems, for example lacking some features as compared with English NERC. In this paper, we propose a method that uses word embedding as features for Korean NERC. We generate a word vector using a Continuous-Bag-of-Word (CBOW) model from POS-tagged corpus, and a word cluster symbol using a K-means algorithm from a word vector. We use the word vector and word cluster symbol as word embedding features in Conditional Random Fields (CRFs). From the result of the experiment, performance improved 1.17%, 0.61% and 1.19% respectively for TV domain, Sports domain and IT domain over the baseline system. Showing better performance than other NERC systems, we demonstrate the effectiveness and efficiency of the proposed method.

MRI Data Segmentation Using Fuzzy C-Mean Algorithm with Intuition (직관적 퍼지 C-평균 모델을 이용한 자기 공명 영상 분할)

  • Kim, Tae-Hyun;Park, Dong-Chul;Jeong, Tai-Kyeong;Lee, Yun-Sik;Min, Soo-Young
    • Journal of IKEEE
    • /
    • v.15 no.3
    • /
    • pp.191-197
    • /
    • 2011
  • An image segmentation model using fuzzy c-means with intuition (FCM-I) model is proposed for the segmentation of magnetic resonance image in this paper. In FCM-I, a measurement called intuition level is adopted so that the intuition level helps to alleviate the effect of noises. A practical magnetic resonance image data set is used for image segmentation experiment and the performance is compared with those of some conventional algorithms. Results show that the segmentation method based on FCM-I compares favorably to several conventional clustering algorithms. Since FCM-I produces cluster prototypes less sensitive to noises and to the selection of involved parameters than the other algorithms, FCM-I is a good candidate for image segmentation problems.

Design of Heavy Rain Advisory Decision Model Based on Optimized RBFNNs Using KLAPS Reanalysis Data (KLAPS 재분석 자료를 이용한 진화최적화 RBFNNs 기반 호우특보 판별 모델 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Lee, Yong-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.473-478
    • /
    • 2013
  • In this paper, we develop the Heavy Rain Advisory Decision Model based on intelligent neuro-fuzzy algorithm RBFNNs by using KLAPS(Korea Local Analysis and Prediction System) Reanalysis data. the prediction ability of existing heavy rainfall forecasting systems is usually affected by the processing techniques of meteorological data. In this study, we introduce the heavy rain forecast method using the pre-processing techniques of meteorological data are in order to improve these drawbacks of conventional system. The pre-processing techniques of meteorological data are designed by using point conversion, cumulative precipitation generation, time series data processing and heavy rain warning extraction methods based on KLAPS data. Finally, the proposed system forecasts cumulative rainfall for six hours after future t(t=1,2,3) hours and offers information to determine heavy rain advisory. The essential parameters of the proposed model such as polynomial order, the number of rules, and fuzzification coefficient are optimized by means of Differential Evolution.

Object Image Classification Using Hierarchical Neural Network (계층적 신경망을 이용한 객체 영상 분류)

  • Kim Jong-Ho;Kim Sang-Kyoon;Shin Bum-Joo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.1
    • /
    • pp.77-85
    • /
    • 2006
  • In this paper, we propose a hierarchical classifier of object images using neural networks for content-based image classification. The images for classification are object images that can be divided into foreground and background. In the preprocessing step, we extract the object region and shape-based texture features extracted from wavelet transformed images. We group the image classes into clusters which have similar texture features using Principal Component Analysis(PCA) and K-means. The hierarchical classifier has five layes which combine the clusters. The hierarchical classifier consists of 59 neural network classifiers learned with the back propagation algorithm. Among the various texture features, the diagonal moment was the most effective. A test with 1000 training data and 1000 test data composed of 10 images from each of 100 classes shows classification rates of 81.5% and 75.1% correct, respectively.

  • PDF

Acoustic Emission Source Classification of Finite-width Plate with a Circular Hole Defect using k-Nearest Neighbor Algorithm (k-최근접 이웃 알고리즘을 이용한 원공결함을 갖는 유한 폭 판재의 음향방출 음원분류에 대한 연구)

  • Rhee, Zhang-Kyu;Oh, Jin-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • A study of fracture to material is getting interest in nuclear and aerospace industry as a viewpoint of safety. Acoustic emission (AE) is a non-destructive testing and new technology to evaluate safety on structures. In previous research continuously, all tensile tests on the pre-defected coupons were performed using the universal testing machine, which machine crosshead was move at a constant speed of 5mm/min. This study is to evaluate an AE source characterization of SM45C steel by using k-nearest neighbor classifier, k-NNC. For this, we used K-means clustering as an unsupervised learning method for obtained multi -variate AE main data sets, and we applied k-NNC as a supervised learning pattern recognition algorithm for obtained multi-variate AE working data sets. As a result, the criteria of Wilk's $\lambda$, D&B(Rij) & Tou are discussed.

Design of Summer Very Short-term Precipitation Forecasting Pattern in Metropolitan Area Using Optimized RBFNNs (최적화된 다항식 방사형 기저함수 신경회로망을 이용한 수도권 여름철 초단기 강수예측 패턴 설계)

  • Kim, Hyun-Ki;Choi, Woo-Yong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.533-538
    • /
    • 2013
  • The damage caused by Recent frequently occurring locality torrential rains is increasing rapidly. In case of densely populated metropolitan area, casualties and property damage is a serious due to landslides and debris flows and floods. Therefore, the importance of predictions about the torrential is increasing. Precipitation characteristic of the bad weather in Korea is divided into typhoons and torrential rains. This seems to vary depending on the duration and area. Rainfall is difficult to predict because regional precipitation is large volatility and nonlinear. In this paper, Very short-term precipitation forecasting pattern model is implemented using KLAPS data used by Korea Meteorological Administration. we designed very short term precipitation forecasting pattern model using GA-based RBFNNs. the structural and parametric values such as the number of Inputs, polynomial type,number of fcm cluster, and fuzzification coefficient are optimized by GA optimization algorithm.

An Efficient Mobile Multicast Mechanism based on Media Independent Handover (MIH 기반의 효율적인 모바일 멀티캐스트 핸드오버 기법)

  • Kim, Won-Tae;Kang, Eun-Hyun;Park, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.6
    • /
    • pp.37-47
    • /
    • 2009
  • In this paper fast mobile multicast handover mechanism based on IEEE 802.21 MIH (Media Independent Handover) is proposed. We solve long multicast handover delay time caused by L3 movement detection mechanism of the existing mobile multicast methods. The proposed architecture adopts multicast manager concept to MIH framework in order to efficiently perform mobile multicast handover, and adds the new MIH messages dedicated for mobile multicast. Since multicast channel zapping operations of mobile users effectively make a mobile terminal handover, the architecture should consider the situations. Multicast network selection algorithm is designed by means of terminal speed and fair selection algorithm named AHP/GRA. Finally the performance of the proposed architecture against the legacy mobile multicast mechanisms is evaluated in terms of signaling cost and multicast handover delay time.

A Resource Clustering Method Considering Weight of Application Characteristic in Hybrid Cloud Environment (하이브리드 클라우드 환경에서의 응용 특성 가중치를 고려한 자원 군집화 기법)

  • Oh, Yoori;Kim, Yoonhee
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.8
    • /
    • pp.481-486
    • /
    • 2017
  • There are many scientists who want to perform experiments in a cloud environment, and pay-per-use services allow scientists to pay only for cloud services that they need. However, it is difficult for scientists to select a suitable set of resources since those resources are comprised of various characteristics. Therefore, classification is needed to support the effective utilization of cloud resources. Thus, a dynamic resource clustering method is needed to reflect the characteristics of the application that scientists want to execute. This paper proposes a resource clustering analysis method that takes into account the characteristics of an application in a hybrid cloud environment. The resource clustering analysis applies a Self-Organizing Map and K-means algorithm to dynamically cluster similar resources. The results of the experiment indicate that the proposed method can classify a similar resource cluster by reflecting the application characteristics.

A Study on the Signal Processing for Content-Based Audio Genre Classification (내용기반 오디오 장르 분류를 위한 신호 처리 연구)

  • 윤원중;이강규;박규식
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.271-278
    • /
    • 2004
  • In this paper, we propose a content-based audio genre classification algorithm that automatically classifies the query audio into five genres such as Classic, Hiphop, Jazz, Rock, Speech using digital sign processing approach. From the 20 seconds query audio file, the audio signal is segmented into 23ms frame with non-overlapped hamming window and 54 dimensional feature vectors, including Spectral Centroid, Rolloff, Flux, LPC, MFCC, is extracted from each query audio. For the classification algorithm, k-NN, Gaussian, GMM classifier is used. In order to choose optimum features from the 54 dimension feature vectors, SFS(Sequential Forward Selection) method is applied to draw 10 dimension optimum features and these are used for the genre classification algorithm. From the experimental result, we can verify the superior performance of the proposed method that provides near 90% success rate for the genre classification which means 10%∼20% improvements over the previous methods. For the case of actual user system environment, feature vector is extracted from the random interval of the query audio and it shows overall 80% success rate except extreme cases of beginning and ending portion of the query audio file.

Fuzzy Algorithm Development for the Integration of Vehicle Simulator with All Terrain Unmanned Vehicle (험로 주행용 무인차량과 차량 시뮬레이터의 융합을 위한 퍼지 알고리즘 개발)

  • Yun, Duk-Sun;Yu, Hwan-Sin;Lim, Ha-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.2
    • /
    • pp.47-57
    • /
    • 2005
  • In this research, the main theme is the system integration of driving simulator and unmanned vehicle. The total system is composed of the mater system and the slave system. The master system has a cockpit system and the driving simulator. The slave system means an unmanned vehicle, which is composed of the actuator system the sensory system and the vision system. The communication system is composed of RS-232C serial communication system which combines the master system with the slave system. To integrate both systems, the signal classification and system characteristics considered DSP(Digital Signal Processing) filter is designed with signal sampling and measurement theory. In addition, to simulate the motion of tele-operated unmanned vehicle on the driving simulator, the classical washout algorithm is applied to this filter, because the unmanned vehicle does not have a limited working space, while the driving simulator has a narrow working space and it is difficult to cover all the motion of the unmanned vehicle. Because the classical washout algorithm has a defect of fixed high pass later, fuzzy logic is applied to reimburse it through an adaptive filter and scale factor for realistic motion generation on the driving simulator.

  • PDF