• Title/Summary/Keyword: k-Means 알고리즘

Search Result 773, Processing Time 0.034 seconds

A Distributed address allocation scheme based on three-dimensional coordinate for efficient routing in WBAN (WBAN 환경에서 효율적인 라우팅을 위한 3차원 좌표 주소할당 기법의 적용)

  • Lee, Jun-Hyuk
    • Journal of Digital Contents Society
    • /
    • v.15 no.6
    • /
    • pp.663-673
    • /
    • 2014
  • The WBAN technology means a short distance wireless network which provides each device interactive communication by connecting devices inside and outside of body. Standardization on the physical layer, data link layer, network layer and application layer is in progress by IEEE 802.15.6 TG BAN. Wireless body area network is usually configured in energy efficient using sensor and zigbee device due to the power limitation and the characteristics of human body. Wireless sensor network consist of sensor field and sink node. Sensor field are composed a lot of sensor node and sink node collect sensing data. Wireless sensor network has capacity of the self constitution by protocol where placed in large area without fixed position. In this paper, we proposed the efficient addressing scheme for improving the performance of routing algorithm by using ZigBee in WBAN environment. A distributed address allocation scheme used an existing algorithm that has wasted in address space. Therefore proposing x, y and z coordinate axes from divided address space of 16 bit to solve this problems. Each node was reduced not only bitwise but also multi hop using the coordinate axes while routing than Cskip algorithm. I compared the performance between the standard and the proposed mechanism through the numerical analysis. Simulation verified performance about decrease averaging multi hop count that compare proposing algorithm and another. The numerical analysis results show that proposed algorithm reduced the multi hop better than ZigBee distributed address assignment

Linear interpolation and Machine Learning Methods for Gas Leakage Prediction Base on Multi-source Data Integration (다중소스 데이터 융합 기반의 가스 누출 예측을 위한 선형 보간 및 머신러닝 기법)

  • Dashdondov, Khongorzul;Jo, Kyuri;Kim, Mi-Hye
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.33-41
    • /
    • 2022
  • In this article, we proposed to predict natural gas (NG) leakage levels through feature selection based on a factor analysis (FA) of the integrating the Korean Meteorological Agency data and natural gas leakage data for considering complex factors. The paper has been divided into three modules. First, we filled missing data based on the linear interpolation method on the integrated data set, and selected essential features using FA with OrdinalEncoder (OE)-based normalization. The dataset is labeled by K-means clustering. The final module uses four algorithms, K-nearest neighbors (KNN), decision tree (DT), random forest (RF), Naive Bayes (NB), to predict gas leakage levels. The proposed method is evaluated by the accuracy, area under the ROC curve (AUC), and mean standard error (MSE). The test results indicate that the OrdinalEncoder-Factor analysis (OE-F)-based classification method has improved successfully. Moreover, OE-F-based KNN (OE-F-KNN) showed the best performance by giving 95.20% accuracy, an AUC of 96.13%, and an MSE of 0.031.

A Study on the Voice Dialing using HMM and Post Processing of the Connected Digits (HMM과 연결 숫자음의 후처리를 이용한 음성 다이얼링에 관한 연구)

  • Yang, Jin-Woo;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.74-82
    • /
    • 1995
  • This paper is study on the voice dialing using HMM and post processing of the connected digits. HMM algorithm is widely used in the speech recognition with a good result. But, the maximum likelihood estimation of HMM(Hidden Markov Model) training in the speech recognition does not lead to values which maximize recognition rate. To solve the problem, we applied the post processing to segmental K-means procedure are in the recognition experiment. Korea connected digits are influenced by the prolongation more than English connected digits. To decrease the segmentation error in the level building algorithm some word models which can be produced by the prolongation are added. Some rules for the added models are applied to the recognition result and it is updated. The recognition system was implemented with DSP board having a TMS320C30 processor and IBM PC. The reference patterns were made by 3 male speakers in the noisy laboratory. The recognition experiment was performed for 21 sort of telephone number, 252 data. The recognition rate was $6\%$ in the speaker dependent, and $80.5\%$ in the speaker independent recognition test.

  • PDF

Image Retrieval System of semantic Inference using Objects in Images (이미지의 객체에 대한 의미 추론 이미지 검색 시스템)

  • Kim, Ji-Won;Kim, Chul-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.7
    • /
    • pp.677-684
    • /
    • 2016
  • With the increase of multimedia information such as image, researches on extracting high-level semantic information from low-level visual information has been realized, and in order to automatically generate this kind of information. Various technologies have been developed. Generally, image retrieval is widely preceded by comparing colors and shapes among images. In some cases, images with similar color, shape and even meaning are hard to retrieve. In this article, in order to retrieve the object in an image, technical value of middle level is converted into meaning value of middle level. Furthermore, to enhance accuracy of segmentation, K-means algorithm is engaged to compute k values for various images. Thus, object retrieval can be achieved by segmented low-level feature and relationship of meaning is derived from ontology. The method mentioned in this paper is supposed to be an effective approach to retrieve images as required by users.

Feature Extraction and Classification of Posture for Four-Joint based Human Motion Data Analysis (4개 관절 기반 인체모션 분석을 위한 특징 추출 및 자세 분류)

  • Ko, Kyeong-Ri;Pan, Sung Bum
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.117-125
    • /
    • 2015
  • In the modern age, it is important for people to maintain a good sitting posture because they spend long hours sitting. Posture correction treatment requires a great deal of time and expenses with continuous observation by a specialist. Therefore, there is a need for a system with which users can judge and correct their postures on their own. In this study, we collected users' postures and judged whether they are normal or abnormal. To obtain a user's posture, we propose a four-joint motion capture system that uses inertial sensors. The system collects the subject's postures, and features are extracted from the collected data to build a database. The data in the DB are classified into normal and abnormal postures after posture learning using the K-means clustering algorithm. An experiment was performed to classify the posture from the joints' rotation angles and positions; the normal posture judgment reached a success rate of 99.79%. This result suggests that the features of the four joints can be used to judge and help correct a user's posture through application to a spinal disease prevention system in the future.

A Dynamic Task Distribution approach using Clustering of Data Centers and Virtual Machine Migration in Mobile Cloud Computing (모바일 클라우드 컴퓨팅에서 데이터센터 클러스터링과 가상기계 이주를 이용한 동적 태스크 분배방법)

  • Mateo, John Cristopher A.;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.103-111
    • /
    • 2016
  • Offloading tasks from mobile devices to available cloud servers were improved since the introduction of the cloudlet. With the implementation of dynamic offloading algorithms, mobile devices can choose the appropriate server for the set of tasks. However, current task distribution approaches do not consider the number of VM, which can be a critical factor in the decision making. This paper proposes a dynamic task distribution on clustered data centers. A proportional VM migration approach is also proposed, where it migrates virtual machines to the cloud servers proportionally according to their allocated CPU, in order to prevent overloading of resources in servers. Moreover, we included the resource capacity of each data center in terms of the maximum CPU in order to improve the migration approach in cloud servers. Simulation results show that the proposed mechanism for task distribution greatly improves the overall performance of the system.

A Study on Research Paper Classification Using Keyword Clustering (키워드 군집화를 이용한 연구 논문 분류에 관한 연구)

  • Lee, Yun-Soo;Pheaktra, They;Lee, JongHyuk;Gil, Joon-Min
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.12
    • /
    • pp.477-484
    • /
    • 2018
  • Due to the advancement of computer and information technologies, numerous papers have been published. As new research fields continue to be created, users have a lot of trouble finding and categorizing their interesting papers. In order to alleviate users' this difficulty, this paper presents a method of grouping similar papers and clustering them. The presented method extracts primary keywords from the abstracts of each paper by using TF-IDF. Based on TF-IDF values extracted using K-means clustering algorithm, our method clusters papers to the ones that have similar contents. To demonstrate the practicality of the proposed method, we use paper data in FGCS journal as actual data. Based on these data, we derive the number of clusters using Elbow scheme and show clustering performance using Silhouette scheme.

KOCED performance evaluation in the wide field of wireless sensor network (무선센서망 내 KOCED 라우팅 프로토콜 광역분야 성능평가)

  • Kim, TaeHyeon;Park, Sea Young;Yun, Dai Yeol;Lee, Jong-Yong;Jung, Kye-Dong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.379-384
    • /
    • 2022
  • In a wireless sensor network, a large number of sensor nodes are deployed in an environment where direct access is difficult. It is difficult to supply power, such as replacing the battery or recharging it. It is very important to use the energy with the sensor node. Therefore, an important consideration to increase the lifetime of the network is to minimize the energy consumption of each sensor node. If the energy of the wireless sensor node is exhausted and discharged, it cannot function as a sensor node. Therefore, it is a method proposed in various protocols to minimize the energy consumption of nodes and maintain the network for a long time. We consider the center point and residual energy of the cluster, and the plot point and K-means (WSN suggests optimal clustering). We want to evaluate the performance of the KOCED protocol. We compare protocols to which the K-means algorithm, one of the latest machine learning methods, is applied, and present performance evaluation factors.

Developing the Forest Fire Occurrence Probability Model Using GIS and Mapping Forest Fire Risks (공간분석에 의한 산불발생확률모형 개발 및 위험지도 작성)

  • An, Sang-Hyun;Lee, Si Young;Won, Myoung Soo;Lee, Myung Bo;Shin, Young-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.57-64
    • /
    • 2004
  • In order to decrease the area damaged by forest fires and to prevent the occurrence of forest fires, the forest fire danger rating system was developed to estimate forest fire risk by means of weather, topography, and forest type. Forest fires occurrence prediction needs to improve continually. Logistic regression and spatial analysis was used in developing the forest fire occurrence probability model. The forest fire danger index in accordance to the probability of forest fire occurrence was used in the classification of forest fire occurrence risk regions.

  • PDF

Comparative Analysis for Clustering Based Optimal Vehicle Routes Planning (클러스터링 기반의 최적 차량 운행 계획 수립을 위한 비교연구)

  • Kim, Jae-Won;Shin, KwangSup
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.155-180
    • /
    • 2020
  • It takes the most important role the problem of assigining vehicles and desigining optimal routes for each vehicle in order to enhance the logistics service level. While solving the problem, various cost factors such as number of vehicles, the capacity of vehicles, total travelling distance, should be considered at the same time. Although most of logistics service providers introduced the Transportation Management System (TMS), the system has the limitation which can not consider the practical constraints. In order to make the solution of TMS applicable, it is required experts revised the solution of TMS based on their own experience and intuition. In this research, different from previous research which have focused on minimizing the total cost, it has been proposed the methodology which can enhance the efficiency and fairness of asset utilization, simultaneously. First of all, it has been adopted the Cluster-First Route-Second (CFRS) approach. Based on the location of customers, we have grouped customers as clusters by using four different clustering algorithm such as K-Means, K-Medoids, DBSCAN, Model-based clustering and a procedural approach, Fisher & Jaikumar algorithm. After getting the result of clustering, it has been developed the optiamal vehicle routes within clusters. Based on the result of numerical experiments, it can be said that the propsed approach based on CFRS may guarantee the better performance in terms of total travelling time and distance. At the same time, the variance of travelling distance and number of visiting customers among vehicles, it can be concluded that the proposed approach can guarantee the better performance of assigning tasks in terms of fairness.