• Title/Summary/Keyword: k-Means 알고리즘

Search Result 773, Processing Time 0.033 seconds

Simplification Method for Lightweighting of Underground Geospatial Objects in a Mobile Environment (모바일 환경에서 지하공간객체의 경량화를 위한 단순화 방법)

  • Jong-Hoon Kim;Yong-Tae Kim;Hoon-Joon Kouh
    • Journal of Industrial Convergence
    • /
    • v.20 no.12
    • /
    • pp.195-202
    • /
    • 2022
  • Underground Geospatial Information Map Management System(UGIMMS) integrates various underground facilities in the underground space into 3D mesh data, and supports to check the 3D image and location of the underground facilities in the mobile app. However, there is a problem that it takes a long time to run in the app because various underground facilities can exist in some areas executed by the app and can be seen layer by layer. In this paper, we propose a deep learning-based K-means vertex clustering algorithm as a method to reduce the execution time in the app by reducing the size of the data by reducing the number of vertices in the 3D mesh data within the range that does not cause a problem in visibility. First, our proposed method obtains refined vertex feature information through a deep learning encoder-decoder based model. And second, the method was simplified by grouping similar vertices through K-means vertex clustering using feature information. As a result of the experiment, when the vertices of various underground facilities were reduced by 30% with the proposed method, the 3D image model was slightly deformed, but there was no missing part, so there was no problem in checking it in the app.

Non-Keyword Model for the Improvement of Vocabulary Independent Keyword Spotting System (가변어휘 핵심어 검출 성능 향상을 위한 비핵심어 모델)

  • Kim, Min-Je;Lee, Jung-Chul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.7
    • /
    • pp.319-324
    • /
    • 2006
  • We Propose two new methods for non-keyword modeling to improve the performance of speaker- and vocabulary-independent keyword spotting system. The first method is decision tree clustering of monophone at the state level instead of monophone clustering method based on K-means algorithm. The second method is multi-state multiple mixture modeling at the syllable level rather than single state multiple mixture model for the non-keyword. To evaluate our method, we used the ETRI speech DB for training and keyword spotting test (closed test) . We also conduct an open test to spot 100 keywords with 400 sentences uttered by 4 speakers in an of fce environment. The experimental results showed that the decision tree-based state clustering method improve 28%/29% (closed/open test) than the monophone clustering method based K-means algorithm in keyword spotting. And multi-state non-keyword modeling at the syllable level improve 22%/2% (closed/open test) than single state model for the non-keyword. These results show that two proposed methods achieve the improvement of keyword spotting performance.

An LV-CAST algorithm for emergency message dissemination in vehicular networks (차량 망에서 긴급 메시지 전파를 위한 LV-CAST 알고리즘)

  • Bae, Ihn-Han
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1297-1307
    • /
    • 2013
  • Several multi-hop applications developed for vehicular ad hoc networks use broadcast as a means to either discover nearby neighbors or disseminate useful traffic information to othet vehicles located within a certain geographical area. However, the conventional broadcast mechanism may lead to the so-called broadcast storm problem, a scenario in which there is a high level of contention and collision at the link layer due to an excessive number of broadcast packets. To solve broadcast storm problem, we propose an RPB-MACn-based LV-CAST that is a vehicular broadcast algorithm for disseminating safety-related emergency message. The proposed LV-CAST identifies the last node within transmission range by computing the distance extending on 1 hop from the sending node of an emergency message to the next node of receiving node of the emergency message, and the last node only re-broadcasts the emergency message. The performance of LV-CAST is evaluated through simulation and compared with other message dissemination algorithms.

A Simulation Model for Evaluating Demand Responsive Transit: Real-Time Shared-Taxi Application (수요대응형 교통수단 시뮬레이션 방안: Real-Time Shared-Taxi 적용예시)

  • Jung, Jae-Young
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.163-171
    • /
    • 2012
  • Demand Responsive Transit (DRT) services are becoming necessary as part of not only alternative transportation means for elderly and mobility impaired passengers, but also sustainable and flexible transportation options in urban area due to the development of communication technologies and Location Based Services (LBS). It is difficult to investigate the system performance regarding vehicle operational schemes and vehicle routing algorithms due to the lack of commercial software to support door-to-door vehicle simulation for larger area. This study proposes a simulation framework to evaluate innovative and flexible transit systems focusing on various vehicle routing algorithms, which describes data-type requirements for simulating door-to-door service on demand. A simulation framework is applied to compare two vehicle dispatch algorithms, Nearest Vehicle Dispatch (NVD) and Insertion Heuristic (IH) for real-time shared-taxi service in Seoul. System productivity and efficiency of the shared-taxi service are investigated, comparing to the conventional taxi system.

SDN-Based Packet-Forwarding and Delay Minimization Algorithm for Efficient Utilization of Network Resources and Delay Minimization (네트워크 자원의 효율적인 사용과 지연을 최소화하기 위한 SDN 기반 서비스별 패킷 전송 및 지연 최소화 알고리즘)

  • Son, Jaehyeok;Hong, ChoongSeon
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.11
    • /
    • pp.727-732
    • /
    • 2015
  • These days, many researchers are working on Future Internet and a new networking paradigm called Software Defined Networking draws a great attention. In this paper, we redefine Software Defined Networking as Service Defined Networking which means that packets are categorized according to types of services. By using Service Defined Networking, we are not only dealing with the way to utilize the network resources efficiently but we also propose an algorithm to minimize the waiting time for packets to be delivered. This proposed algorithm can solve the delay problem, one of the most significant problems caused by network congestion. Also, since we are adopting Service Defined Networking, network resource utilization can be improved compared to the existing network.

Study on the Hand Gesture Recognition System and Algorithm based on Millimeter Wave Radar (밀리미터파 레이더 기반 손동작 인식 시스템 및 알고리즘에 관한 연구)

  • Lee, Youngseok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.251-256
    • /
    • 2019
  • In this paper we proposed system and algorithm to recognize hand gestures based on the millimeter wave that is in 65GHz bandwidth. The proposed system is composed of millimeter wave radar board, analog to data conversion and data capture board and notebook to perform gesture recognition algorithms. As feature vectors in proposed algorithm. we used global and local zernike moment descriptor which are robust to distort by rotation of scaling of 2D data. As Experimental result, performance of the proposed algorithm is evaluated and compared with those of algorithms using single global or local zernike descriptor as feature vectors. In analysis of confusion matrix of algorithms, the proposed algorithm shows the better performance in comparison of precision, accuracy and sensitivity, subsequently total performance index of our method is 95.6% comparing with another two mehods in 88.4% and 84%.

Effective Classification Method of Hierarchical CNN for Multi-Class Outlier Detection (다중 클래스 이상치 탐지를 위한 계층 CNN의 효과적인 클래스 분할 방법)

  • Kim, Jee-Hyun;Lee, Seyoung;Kim, Yerim;Ahn, Seo-Yeong;Park, Saerom
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.81-84
    • /
    • 2022
  • 제조 산업에서의 이상치 검출은 생산품의 품질과 운영비용을 절감하기 위한 중요한 요소로 최근 딥러닝을 사용하여 자동화되고 있다. 이상치 검출을 위한 딥러닝 기법에는 CNN이 있으며, CNN을 계층적으로 구성할 경우 단일 CNN 모델에 비해 상대적으로 성능의 향상을 보일 수 있다는 것이 많은 선행 연구에서 나타났다. 이에 MVTec-AD 데이터셋을 이용하여 계층 CNN이 다중 클래스 이상치 판별 문제에 대해 효과적인지를 탐구하고자 하였다. 실험 결과 단일 CNN의 정확도는 0.7715, 계층 CNN의 정확도는 0.7838로 다중 클래스 이상치 판별 문제에 있어 계층 CNN 방식 접근이 다중 클래스 이상치 탐지 문제에서 알고리즘의 성능을 향상할 수 있음을 확인할 수 있었다. 계층 CNN은 모델과 파라미터의 개수와 리소스의 사용이 단일 CNN에 비하여 기하급수적으로 증가한다는 단점이 존재한다. 이에 계층 CNN의 장점을 유지하며 사용 리소스를 절약하고자 하였고 K-means, GMM, 계층적 클러스터링 알고리즘을 통해 제작한 새로운 클래스를 이용해 계층 CNN을 구성하여 각각 정확도 0.7930, 0.7891, 0.7936의 결과를 얻을 수 있었다. 이를 통해 Clustering 알고리즘을 사용하여 적절히 물체를 분류할 경우 물체에 따른 개별 상태 판단 모델을 제작하는 것과 비슷하거나 더 좋은 성능을 내며 리소스 사용을 줄일 수 있음을 확인할 수 있었다.

  • PDF

Authentication Performance Optimization for Smart-phone based Multimodal Biometrics (스마트폰 환경의 인증 성능 최적화를 위한 다중 생체인식 융합 기법 연구)

  • Moon, Hyeon-Joon;Lee, Min-Hyung;Jeong, Kang-Hun
    • Journal of Digital Convergence
    • /
    • v.13 no.6
    • /
    • pp.151-156
    • /
    • 2015
  • In this paper, we have proposed personal multimodal biometric authentication system based on face detection, recognition and speaker verification for smart-phone environment. Proposed system detect the face with Modified Census Transform algorithm then find the eye position in the face by using gabor filter and k-means algorithm. Perform preprocessing on the detected face and eye position, then we recognize with Linear Discriminant Analysis algorithm. Afterward in speaker verification process, we extract the feature from the end point of the speech data and Mel Frequency Cepstral Coefficient. We verified the speaker through Dynamic Time Warping algorithm because the speech feature changes in real-time. The proposed multimodal biometric system is to fuse the face and speech feature (to optimize the internal operation by integer representation) for smart-phone based real-time face detection, recognition and speaker verification. As mentioned the multimodal biometric system could form the reliable system by estimating the reasonable performance.

A Lossless Medical Image Compression Using Variable Block (가변 블록을 이용한 의료영상 무손실 압축)

  • Lee, Jong-Sil;Gwon, O-Sang;Gu, Ja-Il;Han, Yeong-Hwan;Hong, Seung-Hong
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.361-367
    • /
    • 1998
  • We student tow image characteristics, the smoothness and the similarity, which give rise to local and global redundancy in image representation. The smoothness means that the gray level values within a given block vary gradually rather than abruptly. The similarity means that any patterns in an image repeat itself anywhere in the rest of the image. In this sense, we proposed a lossless medical image compression scheme which exploits both types of redundancy. The proposed method segments the image into variable size blocks and encodes them depending on characteristics of the blocks. The proposed compression schemes works better 10~40[%] than other compression scheme such as the Huffman, the arithmetic, the Lempel-Ziv, HINT(Hierachical Interpolation) and the lossless scheme of JPEG with one predictor.

  • PDF

Development of Monitoring System for the LNG plant fractionation process based on Multi-mode Principal Component Analysis (다중모드 주성분분석에 기반한 천연가스 액화플랜트의 성분 분리공정 감시 시스템 개발)

  • Pyun, Hahyung;Lee, Chul-Jin;Lee, Won Bo
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.19-27
    • /
    • 2019
  • The consumption of liquefied natural gas (LNG) has increased annually due to the strengthening of international environmental regulations. In order to produce stable and efficient LNG, it is essential to divide the global (overall) operating condition and construct a quick and accurate monitoring system for each operation condition. In this study, multi-mode monitoring system is proposed to the LNG plant fractionation process. First, global normal operation data is divided to local (subdivide) normal operation data using global principal component analysis (PCA) and k-means clustering method. And then, the data to be analyzed were matched with the local normal mode. Finally, it is determined the state of process abnormality through the local PCA. The proposed method is applied to 45 fault case and it proved to be more than 5~10% efficient compared to the global PCA and univariate monitoring.