• Title/Summary/Keyword: k-${\varepsilon}$ 모델

검색결과 248건 처리시간 0.024초

디퓨저에서 벽면으로의 방출유로에서의 압력손실 (Pressure Loss in the Discharge Flow Path from a Diffuser to a wall)

  • 이준;김영인;김성훈;이두정
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.517-522
    • /
    • 2001
  • The exit edges of a diffuser are smoothly rounded, and a wall is located perpendicularly to a diffuser exit. The fluid is discharged towards the radial direction of a diffuser after impinging against a wall from a diffuser. In this flow path, pressure loss coefficients have been calculated by the variables of Reynolds number at a diffuser inlet, distance between a diffuser exit and a wall, and turbulence models. As a result, it was calculated that $h/D_0$ ratio between $0.35\sim0.4$ has the minimum pressure loss coefficient regardless of Reynolds number and turbulence models. It was also found that in case of the flow with relatively high Reynolds number at a diffuser inlet, the pressure loss coefficients by RNG $k-\varepsilon$ model have a tendency to be near to those by standard $k-\varepsilon$ model at small ratio of $h/D_0$, but to those by RSM at large ratio.

  • PDF

축대칭 선회난류의 수치해석에 의한 비등방 k - ${\epsilon}$ 난류모델의 評價 (Evaluation of the Anisotropic k - ${\epsilon}$ Turbulence Model by the Numerical Analysis of Axisymmetric Swirling Turbulent Flow)

  • 이연원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권5호
    • /
    • pp.39-44
    • /
    • 1996
  • To overcome weak poinks of the standard k-${\varepsilon}$ turbulence model when applied to complex turbulent flows, various modified models were proposed. But their effects are confined to special flow fields. They have still some problems. Recently, an anisotropic k-${\varepsilon}$ turbulence model was also proposed to solve the drawback of the standard k-${\varepsilon}$ turbulence model. This study is concentrated on the evaluation of the anisotropic k-${\varepsilon}$ turbulence model by the analysis of axisymmetric swirling turbulent flow. Results show that the anisotropic k-${\varepsilon}$ turbulence model has scarecely the fundamentally physical mechanism of predicting the swirling structure of flow.

  • PDF

대수 레이놀즈 응력모델에 의한 단이 진 벽면분류에 대한 수치해석 (Numerical Analyses on Wall-Attaching Offset Jet with Algebraic Reynolds Stress Model)

  • 서호택;부정숙
    • 대한기계학회논문집B
    • /
    • 제24권12호
    • /
    • pp.1615-1624
    • /
    • 2000
  • Algebraic Reynolds Stree (ARS) model is applied in order to analyze the turbulent flow of wall-attaching offset jet and to evaluate the predictability of model. The applied numerical schemes are the upwind scheme and the skew-upwind scheme. The numerical results show a good prediction in the first order calculations(i.e., reattachment length, mean velocity, pressure), however, slight deviations in the second order(i.e., kinetic energy and turbulence intensity). Comparing with the previous results using the k-$\varepsilon$ model, the ARS model predicts better than the standard k-$\varepsilon$ model, however, slightly worse than the k-$\varepsilon$ model including the streamline curvature modification. Additionallay this study can reconfirm that the skew-upwind scheme has approximately 25% improved predictability than the upwind scheme.

초음속 노즐 유동의 최적해석을 위한 난류모델의 평가와 선정 (Assessment and Validation of Turbulence Models for the Optimal Computation of Supersonic Nozzle Flow)

  • 감호동;김정수
    • 한국추진공학회지
    • /
    • 제17권1호
    • /
    • pp.18-25
    • /
    • 2013
  • 초음속 축소-확대 노즐 유동을 정확하게 해석하기 위하여, 실험치와 해석값 사이의 비교를 통해 난류모델 성능평가를 수행한다. Boussinesq 가정을 적용한 RANS 방정식으로 2차원 노즐 유동을 해석하되, Spalart-Allmaras, RNG k-${\varepsilon}$, 그리고 k-${\omega}$ SST 난류모델을 평가에 사용한다. 각 모델들로 계산된 노즐 벽면의 압력구배 및 충격파 구조는 실험 데이터와 유사한 결과를 보였는데, 그 중에서도 SST 난류모델이 실험값에 가장 근접한 해석결과를 나타내었다.

난류모델에 따른 건물주위의 유동 예측 (A Prediction of the Flow Characteristics around Buildings with the Turbulent Models)

  • 이승호;여재현;허남건;최창근
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.168-171
    • /
    • 2008
  • In the present study, turbulent flows around cubic and L-shape buildings were simulated numerically. Standard ${\kappa}$-$\varepsilon$, RNG ${\kappa}$-$\varepsilon$, LES turbulence models were adopted for the present simulation. The wind pressure coefficients from these results were compared with the available experimental data. The result of RNG ${\kappa}$-$\varepsilon$ and LES turbulent models gave better prediction than that of standard ${\kappa}$-$\varepsilon$ turbulent model which is widely used in the turbulent flow simulation.

  • PDF

대수 레이놀즈 응력모델에 의한 단이 진 벽면분류에 대한 수치해석 (Numerical Analyses on Wall-Attaching Offset Jet with Algebraic Reynolds Stress Model)

  • 서호택;이득수;부정숙
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.579-584
    • /
    • 2000
  • Algebraic Reynolds Stress (ARS) model is applied in order to analyze the turbulent flow of wall-attaching offset jet and to evaluate the model's predictability. The applied numerical schemes are upwind scheme and skew-upwind scheme. The numerical results show good prediction in first order calculations (i.e., reattachment length, mean velocity, pressure), while they show slight deviations in second order (i.e., kinetic energy and turbulence intensity). By comparison with the previous results using $k-{\varepsilon}$ model, ARS model predicts better than the standard $k-{\varepsilon}$ model, however, predicts slightly worse than the $k-{\varepsilon}$ model including the streamline curvature modification. Additionally this study can reconfirm that skew-upwind scheme has approximately 25% improved predictability than upwind scheme.

  • PDF

축류 회전차 익말단 틈새유동에 대한 수치해석(II) - 틈새변화 및 영각변화에 따른 누설와류의 변화 - (Numerical Analysis on the Blade Tip Clearance Flow in the Axial Rotor (II) - Variation of Leakage Vortex with Tip Clearance and Attack Angle -)

  • 노수혁;조강래
    • 대한기계학회논문집B
    • /
    • 제23권9호
    • /
    • pp.1106-1112
    • /
    • 1999
  • Substantial losses behind axial flow rotor are generated by the wake, various vortices in the hub region and the tip leakage vortex in the tip region. Particularly, the leakage vortex formed near blade tip is one of the main causes of the reduction of performance, generation of noise and aerodynamic vibration in downstream. In this study, the three-dimensional flow fields in an axial flow rotor were calculated with varying tip clearance under various flow rates, and the numerical results were compared with experimental ones. The numerical technique was based on SIMPLE algorithm using standard $k-{\varepsilon}$ model(WFM) and Launder & Sharma's Low Reynolds Number $k-{\varepsilon}$ model(LRN). Through calculations, the effects of tip clearance and attack angle on the 3-dimensional flow fileds behind a rotor and leakage flow/vortex were investigated. The presence of tip leakage vortex, loci of vortex center and its behavior behind the rotor for various tip clearances and attack angles was described well by calculation.

비등방 $k-\varepsilon$ 난류모델에 의한 회전 덕트유동의 수치해석 (Numerical Analysis of Rotating Channel Flow with an Anisotropic $k-\varepsilon$ Turbulence Model)

  • 명현국
    • 대한기계학회논문집B
    • /
    • 제21권8호
    • /
    • pp.1046-1055
    • /
    • 1997
  • An anisotropic k-.epsilon. turbulence model for predicting the rotating flows is proposed with the simple inclusion of a new parameter dealing with the extra straining effects in the .epsilon.-equation. This model is employed to compute the effects of Coriolis forces on fully-developed flow in a rotating channel. The predicted results indicate that the present model captures fairly well the striking rotational-induced effects on the Reynolds stresses and the mean flow distributions, including the argumentation of turbulent transport on the unstable side (pressure surface) of the channel and its damping on the stable side (suction surface).

저레이놀즈수 k-$\varepsilon$ 모델을 사용한 2차원 자연대류 난류현상에 대한 수치적 연구 (A Numerical Study on the Two-Dimensional Turbulent Natural Convection Using a Low-Reynolds Number k-$\varepsilon$ Model)

  • 강덕홍;김우승;이관수
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.741-750
    • /
    • 1995
  • The turbulent buoyancy-driven flow in 2-dimensional enclosed cavities heated from the vertical side is numerically calculated for both cases of a Rayleigh number of 5*10$^{10}$ for air and 2.5*10$^{10}$ for water. Three different turbulence models are considered : standard k-.epsilon. model of Ozoe and low-Reynolds-number model of Lam and Bremhorst, and another low-Reynolds-number model of Davidson. The results indicate that the use of low-Reynolds number models is recommended for the indoor airflow computation, and the results from Davidson model are reasonably close to the reported experimental data. A sensitivity study shows that the amounts of wall-heat transfer and the velocity profiles with the Lam and Bremhorst model largely depend on the choice of the wall function for .epsilon..

RNG $k-\varepsilon$ 모델의 적용성에 대한 연구 (A Study of Applicability of a RNG $k-\varepsilon$ Model)

  • 양희천;유홍선;임종한
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1149-1164
    • /
    • 1997
  • In this study, the applicability of the RNG k-.epsilon. model to the analysis of the complex flows is studied. The governing equations based on a non-orthogonal coordinate formulation with Cartesian velocity components are used and discretized by the finite volume method with non-staggered variable arrangements. The predicted results using the RNG k-.epsilon. model of three complex flows, i.e., the flow over a backward-facing step and a blunt flat plate, the flow around a 2D model car are compared to these from the standard k-.epsilon. model and experimental data. That of the unsteady axisymmetric turbulent flow within a cylinder of reciprocating model engine including port/valve assembly and the spray characteristics within a chamber of direct injection model engine are compared to these from the standard k-.epsilon. model and experimental data. The results of reattachment length, separated eddy size, average surface pressure distribution using the RNG k-.epsilon. model show more reasonable trends comparing with the experimental data than those using the modified k-.epsilon. model. Although the predicted rms velocity using the modified k-.epsilon. model is lower considerably than the experimental data in incylinder flow with poppet valve, predicted axial and radial velocity distributions at the valve exit and in-cylinder region show good agreements with the experimental data. The spray tip penetration predicted using the RNG k-.epsilon. model is more close to the experimental data than that using the modified k-.epsilon. model. The application of the RNG k-.epsilon. model seems to have some potential for the simulations of the unsteady turbulent flow within a port/valve-cylinder assembly and the spray characteristics over the modified k-.epsilon. model.