• Title/Summary/Keyword: k-$\varepsilon$Turbulence Model

Search Result 467, Processing Time 0.027 seconds

해양유출기름의 확산 시뮬레이션 모델 개발I- 폐쇄만에서의 3차원 흐름특성분석 - (Development of Simulation Model for Diffusion of Oil Spill in the Ocean 1 -Three Dimensional Characteristics of the Circulation in the Nearly Closed Bay-)

  • 이중우;김기철;강신영;도덕희
    • 한국항만학회지
    • /
    • 제11권2호
    • /
    • pp.241-255
    • /
    • 1997
  • 한국의 부산에 위치한 감천만에서의 해수유동을 파악하기 위하여 3차원 유동모델을 사용하여 계산을 하고 그 결과를 관측치와 비교하였다. 모델은 개방경계에서의 조직, 바람, 화력발전소에서의 온배수에 의해 힘을 받아 해수유동을 재현한다. 난류 혼합계수는 $\kappa-\varepsilon$난류클로즈 모델의 의해 계산하였다. 수온, 염분, 해조류를 현장관측하여 관측자료와 모델결과를 비교하였다. 소용돌이 형태의 흐름이 현장관측자료와 모델결과에서 관측되었는데 이는 약한 조류와 풍성류, 온배수의 상호작용에 의해 형성된 것으로 분석되어진다. 표층과 저층의 흐름은 서로 연관되어 있는데 즉, 표층의 흐름이 강해지는 저츠으이 흐름이 약해지고 반대의 경우도 성립한다.

  • PDF

삼차원 Navier-Stokes 해석과 반응면기법을 이용한 원심다익송풍기의 최적설계 (Design Optimization of A Multi-Blade Centrifugal Fan with Navier-Stokes Analysis and Response Surface Method)

  • 서성진;김광용
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1457-1463
    • /
    • 2003
  • In this paper, the response surface method using three-dimensional Navier-Stokes analysis to optimize the shape of a multi-blade centrifugal fan, is described. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard k - c turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.

다수의 취출구를 갖는 A/C덕트의 최적설계에 관한 연구 (A Study on the Optimum Design of Air-Conditioning Duct with Multiple Diffusers)

  • 김민호;이대훈
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.98-106
    • /
    • 2002
  • The airflow characteristics of an air-conditioning duct with multiple diffusers were investigated through one-dimensional analysis, CFD simulation and experimental measurement. One-dimensional program based on Bernoulli's equation and minor loss equations was developed in order to evaluate the air distribution rate at each diffuser. In CFD simulation, three-dimensional flow characteristics inside air-conditioning duct were computed for incompressible viscous flow, adopting the RNG k-$\xi$turbulence model. Also, in an effort to equalize the discharge flow rate at each outlet, the optimization procedure has been performed to obtain the optimum diffuser area. In this process, square of difference between maximum discharge rate and minimum discharge rate is used as an object function. Diffuser area and discharge velocity are established as constraints. After optimization process, determined design variables are applied again in CFD simulation and experiment to validate the optimized result by one-dimensional program. Comparison with the experimental data of airflow rate distribution showed that the developed program seems to be acceptable and can be useful design tool for an automotive air-conditioning duct in an initial design stage.

고층건물에 작용하는 풍하중에 관한 수치 해석적 연구 (Numerical study of wind load on the high-rise building)

  • 송지수;박승오;김동우;하영철
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.205-208
    • /
    • 2008
  • The wind load on building surface is numerically investigated. The geometry of target building is a square cross section and aspect ratio (height (H) to width (d)) is 6. On building surface, the pressure was measured, compared to obtained value from numerical simulation. The numerical simulations were done using URANS with three different turbulence models such as v2-f model, k-${\omega}$model, and k-${\varepsilon}$ model, respectively. The v2-f model showed the best agreement with experimental data in simulating mean pressure coefficients on front, rear and side surface. But unsteady characteristics of pressure history measured on surface is shown a discrepancy between experiment and numerical simulation.

  • PDF

3차원 난류 벽면제트 유동의 수치해석 (Numerical analysis of a three-dimensional turbulent wall-jet flow)

  • 유승엽;최도형;김성진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.479-484
    • /
    • 2000
  • A Navier-stokes based finite volume method has been developed to analyze an incompressible, steady state, turbulent wall-jet flow. The standard k-e model, the RNG ${\kappa}-{\varepsilon}$ model and their nonlinear counterparts are adopted as a closure relationship. Comparison with the experimental data shows that a linear ${\kappa}-{\varepsilon}$ model performs satisfatorily for two-dimensional wall-jet flows. However, as the flow becomes three dimensional, the linear model fails to predict the spanwise jet growth accurately and the nonlinear model needs to be adopted to capture three-dimensional flow characteristics.

  • PDF

사각형형상 불투과성 수증방파제에 의한 불규칙파의 변형 (Transformation of Irregular Waves due to Rectangular Submerged Non-porous Breakwaters)

  • 황종길;이승협;조용식
    • 한국수자원학회논문집
    • /
    • 제37권11호
    • /
    • pp.949-958
    • /
    • 2004
  • 본 연구에서는 사각형형상 수중방파제에 의한 불규칙파의 반사에 대하여 수리모형실험과 수치모형실험을 수행한 후 실험결과를 비교하였다. 수치해석 모형에서는 Reynolds 방정식을 지배방정식으로 사용하고 난류해석을 위해 k-$\varepsilon$모델을 적용하였으며, 자유수면변위를 추적하기 위해 VOF기법을 사용하였다. 수리모형실험과 수치모형실험의 결과는 서로 잘 일치하였으며, 수중방파제의 배열이 증가함에 따라 반사율은 증가하였다.

환기용 축류송풍기의 유동해석 및 모터 위치에 따른 성능 특성 연구 (Flow Analysis and Performance Evaluation of a Ventilation Axial-Flow Fan Depending on the Position of Motor)

  • 김재우;김진혁;김광용
    • 한국유체기계학회 논문집
    • /
    • 제13권4호
    • /
    • pp.25-30
    • /
    • 2010
  • Flow analysis and performa nce evaluation have been performed for a ventilation axial-flow fan with different positions of the motor. Two different positions of motor have been tested; one is in front of the impeller and the other is behind the impeller. Flow analyses are performed by solving three-dimensional Reynolds-averaged Navier-Stokes equations through a finite-volume solver. Preliminary numerical calculations are carried out to test the performances of different turbulence models, i.e., SST model, k-$\omega$ model, and k-$\varepsilon$ model with and without using empirical wall function in the flow analysis. The validation of numerical analyses has been performed in comparison with the experimental data. The numerical results for the performance characteristics of the ventilation axial-flow fan with two different positions of the motor have been presented.

Effects of Inlet Turbulence Conditions and Near-wall Treatment Methods on Heat Transfer Prediction over Gas Turbine Vanes

  • Bak, Jeong-Gyu;Cho, Jinsoo;Lee, Seawook;Kang, Young Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권1호
    • /
    • pp.8-19
    • /
    • 2016
  • This paper investigates the effects of inlet turbulence conditions and near-wall treatment methods on the heat transfer prediction of gas turbine vanes within the range of engine relevant turbulence conditions. The two near-wall treatment methods, the wall-function and low-Reynolds number method, were combined with the SST and ${\omega}RSM$ turbulence model. Additionally, the RNG $k-{\varepsilon}$, SSG RSM, and $SST_+{\gamma}-Re_{\theta}$ transition model were adopted for the purpose of comparison. All computations were conducted using a commercial CFD code, CFX, considering a three-dimensional, steady, compressible flow. The conjugate heat transfer method was applied to all simulation cases with internally cooled NASA turbine vanes. The CFD results at mid-span were compared with the measured data under different inlet turbulence conditions. In the SST solutions, on the pressure side, both the wall-function and low-Reynolds number method exhibited a reasonable agreement with the measured data. On the suction side, however, both wall-function and low-Reynolds number method failed to predict the variations of heat transfer coefficient and temperature caused by boundary layer flow transition. In the ${\omega}RSM$ results, the wall-function showed reasonable predictions for both the heat transfer coefficient and temperature variations including flow transition onset on suction side, but, low-Reynolds methods did not properly capture the variation of the heat transfer coefficient. The $SST_+{\gamma}-Re_{\theta}$ transition model showed variation of the heat transfer coefficient on the transition regions, but did not capture the proper transition onset location, and was found to be much more sensitive to the inlet turbulence length scale. Overall, the Reynolds stress model and wall function configuration showed the reasonable predictions in presented cases.

기저부를 갖는 축대칭 수중운동체의 저항예측에 관한 수치적 연구 (Numerical Investigation for Drag Prediction of an Axisymmetric Underwater Vehicle with Bluff Afterbody)

  • 김민재
    • 한국군사과학기술학회지
    • /
    • 제13권3호
    • /
    • pp.372-377
    • /
    • 2010
  • The objective of this study is to predict the drag of an axisymmetric underwater vehicle with bluff afterbody using CFD. FLUENT, commercial CFD code, is used to simulate high Reynolds number turbulent flows around the vehicle. The computed drag coefficients are compared to available experimental data at various Reynolds numbers. Four widely used two-equation turbulence models are investigated to evaluate their performance of predicting the anisotropic turbulence in a recirculating flow region, which is caused by flow separation arising from the base of the vehicle. The simulations with Realizable ${\kappa}-{\varepsilon}$ and ${\kappa}-{\omega}$ SST turbulence models predict the anisotropic turbulent flows comparatively well and the drag prediction results with those models show good agreements with the experimental data.

Numerical and experimental simulation of the wind field in the EXPO '98 area

  • Ferreira, A.D.;Sousa, A.C.M.;Viegas, D.X.
    • Wind and Structures
    • /
    • 제1권4호
    • /
    • pp.337-349
    • /
    • 1998
  • A numerical and experimental study was performed for the wind flow field in one area, comprising a group of several pavilions separated by passageways, of the EXPO '98 - a World Exposition (Lisbon, Portugal). The focus of this study is the characterization of the flow field to assess pedestrian comfort. The predictions were obtained employing the Reynolds averaged Navier-Stokes equations with the turbulence effects dealt with the ${\kappa}-{\varepsilon}$ RNG model. The discretization of the differential equations was accomplished with the control volume formulation in a Cartesian coordinate system, and an advanced segregated procedure was used to achieve the link between continuity and momentum equations. The evaluation of the overall numerical model was performed by comparing its predictions against experimental data for a square cylinder placed in a channel. The predicted values, for the practical geometry studied, are in a good agreement with the experimental data, showing the performance and the reliability of the ${\kappa}-{\varepsilon}$ RNG model and suggesting that the numerical simulation is a reliable methodology to provide the required information.