• Title/Summary/Keyword: k-$\varepsilon$모델

Search Result 248, Processing Time 0.026 seconds

Evaluation of Turbulent Models on the Mixing Flow Structure of $45^{\circ}$ Impinging Jet by Two Round Jets (두 원형분류에 의한 $45^{\circ}$ 충돌분류의 흔합유동구조에 대한 난류모델 평가)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.34-39
    • /
    • 2009
  • In this paper, the CFD analysis using various turbulent models has been performed to evaluate which type of turbulent models can predict well the mixing flow structure of $45^{\circ}$ impinging round jet. This CFD analysis has been carried out through the commercial Fluent software. As a result, any of turbulent models cannot predict the experimental results definitely all over the flow range. However, as compared with the experimental results, the turbulent model of realizable(RLZ) k-$\varepsilon$ only predicts well in the limited range between X/$X_0=1.1$ and X/$X_0=2.0$.

  • PDF

Numerical Analysis of Swirling Turbulent Flow in a Pipe (원관내 난류 선회류의 수치해석)

  • Lee, D.W.;Kim, K.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.396-405
    • /
    • 1995
  • Numerical calculations are carried out for the swirling turbulent flow in a pipe. Calculations are made for the flow with swirl parameter of 2.25 and the Reynolds number of 24,300. The turbulence closure models used in these calculations are two different types of Reynolds stress model, and the results are compared with those of $k-{\varepsilon}$ model and the experimental data. The finite volume method is used for the discretization, and the power-law scheme is employed as a numerical scheme. The SIMPLE algorithm is used for velocity-pressure correction. The computational results show that GL model gives the results better than those of SSG model in the predictions of velocity and stress components.

  • PDF

Flow Analysis and Performance Evaluation of a Ventilation Axial-Flow Fan Depending on the Position of Motor (환기용 축류송풍기의 유동해석 및 모터 위치에 따른 성능 특성 연구)

  • Kim, Jae-Woo;Kim, Jin-Hyuk;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.25-30
    • /
    • 2010
  • Flow analysis and performa nce evaluation have been performed for a ventilation axial-flow fan with different positions of the motor. Two different positions of motor have been tested; one is in front of the impeller and the other is behind the impeller. Flow analyses are performed by solving three-dimensional Reynolds-averaged Navier-Stokes equations through a finite-volume solver. Preliminary numerical calculations are carried out to test the performances of different turbulence models, i.e., SST model, k-$\omega$ model, and k-$\varepsilon$ model with and without using empirical wall function in the flow analysis. The validation of numerical analyses has been performed in comparison with the experimental data. The numerical results for the performance characteristics of the ventilation axial-flow fan with two different positions of the motor have been presented.

Numerical Study for Influence of Crossdraft Directions and Magnitudes on Push-Pull Ventilation Systems (푸시풀 후드시스템의 방해기류 방향 및 세기의 영향에 관한 수치적 연구)

  • Li, Xiao Yu;Kim, Tae Hyeung;Piao, Cheng Xu;Ha, Hyun Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.2
    • /
    • pp.161-170
    • /
    • 2008
  • 푸쉬-풀 환기시스템은 도금조와 같이 흡인해야 할 거리가 상대적으로 긴 경우에 많이 사용되고 있다. 그러나, 창문이나 출입문을 통한 방해기류가 푸쉬-풀 환기시스템의 오염물질 제어효율을 심각하게 훼손시키고 있다고 추측하고 있으나 이에 대한 세부적인 연구가 부족한 상태에 있다. 따라서, 본 연구에서는 전산유체역학(Computational fluid dynamics)을 이용하여 푸쉬-풀 환기시스템에서의 방해기류의 방향과 세기가 흡인효율에 어떠한 영향을 미치는지에 대해 평가해 보았다. 선형흡인효율(Linear capture efficiency) 방법을 이용하여 푸쉬-풀 환기시스템에서 가상의 개방조에서 발생한 오염물질이 푸쉬-풀 시스템에 의하여 포집되지 못하고 누출되는 구역이 어딘지를 찾아낼 수 있었다. 전산유체역학 컴퓨터시뮬레이션은 AIRPAK2.1 (FLUENT CODE) 소프트웨어를 사용하였다. 푸쉬-풀 후드시스템에 방해기류가 강하게 작용하면 상대적으로 강한 와류가 발생하는데, 일반적인 난류모델인 ${\kappa}-{\varepsilon}$모델은 와류현상을 충분히 보여주지 못한 반면에 RNG 모델을 사용했을 때 실험결과를 적절히 모사해낼 수 있었다. RNG 모델을 이용하여 세가지 방향, 즉 푸쉬에서 풀 방향으로, 풀에서 푸쉬 방향으로 그리고 그에 수직되는 방향으로 방해기류가 있을 때의 푸쉬-풀 환기시스템의 흡인효율을 분석하였다. 방해기류가 0.25m/s이하일 때에는 흡인효율이 거의 떨어지지 않았으나, 방해기류가 0.6m/s에서 흡인효율이 40-70%로 떨어짐을 알 수 있었다. 따라서, 방해기류를 감소시킬 수 있는 방안에 대해서도 연구를 해야 되겠지만, 방해기류 존재 하에서 충분한 흡인 효율을 유지할 수 있는 푸쉬-풀 후드 설계기준에 대한 연구도 필요할 것으로 판단된다.

A Numerical Study on the Fire Behavior Phenomena in a Special Fire Protection Compartment (특수 방호공간에서 가상화재의 발생으로 인한 화재거동에 관한 수치적 연구)

  • Kim, Tae-Kuk;Son, Bong-Sei
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.1 s.1
    • /
    • pp.157-163
    • /
    • 2001
  • The objective of the present study is to predict the characteristics of the fire and smoke propagations in a clean room. Numerical calculations have been performed by using the finite volume method to obtain temperature and velocity distributions in the clean room. In odor to account for the turbulent flow characteristics, the standard $k-{\varepsilon}$ model is used. From this study, it was found that the fire propagation could be fully developed only after 150 seconds when the ventilation system in the clean room was off. And the smoke mass fraction showed a similar distribution as the gas temperature. Since the simulated fire was proceeded up to $20{\sim}30%$ of the room within 60 seconds. it could be recommended that the occupants should be evacuated from the room within 30 seconds.

  • PDF

A Numerical Simulation of Unsteady Axisymmetric Turbulent Flow in a Reciprocating Engine Including Port/Valve Assembly (축대칭 왕복엔진의 비정상 난류유동에 대한 수치해석)

  • 조진행;유홍선;최영기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.139-149
    • /
    • 1994
  • A numerical simulation of unsteady axisymmetric turbulent flow was performed for a reciprocating engine including port/valve assembly. The governing equations based on a nonorthogonal coordinate formulation with Cartesian velocity components were used and discretised by the finite volume method with non-staggered variable arrangements. The modified $\kappa-\xi$. turbulence model which included the effect of compressibility was used. The results of twodimensional transient calculation for the axisymmetric configuration were compared with the experimental data. Although slightly low rms velocity was predicted compared to the experimental data, predicted velocity distributions at the valve exit and in-cylinder region showed good agreements with the experimental data. The flow at the valve exit was separated at the same valve lift position with the experimental data. Two vortices incylinder region were generated during the initial intake process. The clockwise main vortex became strong and moved upward to the top wall. The counter-clockwise second vortex became weak and stick to the upper left corner of the cylinder. After middle intake process, new vortex adjacent to upper cylinder wall appeared by the piston motion and therefore, the in-cylinder flow was formed into three vortices. The cylinder pressure just before bottom dead center of piston was higher than inlet pressure and then the reverse flow occured at the valve exit. The in-cylinder flow characteristics were strongly dependent on piston motion, but insensitive to valve motion.

Numerical Analysis on the Cavitation Performance of a Seawater Cooling Pump (해수냉각 펌프의 캐비테이션 성능에 대한 수치해석)

  • Tran, Bao Ngoc;Kim, Jun-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.130-137
    • /
    • 2019
  • In this study, a centrifugal seawater cooling pump was analyzed to investigate its cavitation behavior over different operating flow rates. 3D two-phase simulations were carried out with ANSYS-CFX commercial code. The $k-{\varepsilon}$ turbulence and Rayleigh-Plesset cavitation models were employed in the simulations. A head drop characteristics curves for three discharge rates was built based on numerical predictions. At higher flow rates, the impeller was more vulnerable to bubble cavitation. The 3 % head drop points of the pump working at 0.7Q, Q, and 1.3Q (Q: design flow rate) corresponded with NPSHa 1.21 m, 1.83 m, and 3.45 m, respectively. The volume of vapor bubbles was estimated and cavitation locations were anticipated to visualize the development of the cavity within the impeller. Moreover, the distribution of pressure coefficient and a blade loading chart are specifically presented, bringing out the harmful impacts of cavitation on the pump operation.

Numerical simulations of vortex development behind a circular patchof vegetation patch (원형식생 하류의 와류발달 수치모의)

  • Kim, Hyung Suk;Park, Moon Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.395-395
    • /
    • 2015
  • 하천 내 식생은 수리학, 지형학 및 생태학적으로 매우 중요하다. 식생은 하천 수생물들의 서식처를 제공할 뿐만 아니라 필터와 같은 역할을 함으로써 부유사에 의한 하천오염물의 퇴적을 유발하여 하천의 수질을 개선시킨다. 더욱이, 하천 내 흐름 및 난류구조를 변경시킴으로써 식생주변의 유사 퇴적량 및 분포에 크게 영향을 미치고, 결국 하천의 지형을 변화시킨다. 개수로의 식생에 대한 영향은 주로 실험 및 수치모델을 이용하여 연구되었고 전단면이 식재된 조건에서 식생의 항력계수, 식생역내의 부유사 및 확산에 관한 연구가 진행되어왔다. 이러한 연구를 통해 식생역 내의 전단력이 감소하여 부유사퇴적이 증가하고 식생역과 비식생역 사이의 운동량 교환에 의해 부유사 퇴적이 증가함을 보였다. 그러나 개수로에서 존재하는 유한한 크기의 식생에 의한 흐름 및 유사분포에 관한 연구는 아직 미흡하다. 이에 본 연구에서는 침수하지 않은 원형 식생 주변에서 발생하는 흐름특성을 수치모의 하였다. 침수하지 않은 원형식생 하류에서 발생하는 흐름을 계산하기 위해 2차원 수치모형을 적용하였다. 식생에 의한 저항을 고려하기 위해 운동량 방정식에 식생항을 추가하였고 $k-{\varepsilon}$ 난류모형을 적용하였다. 수치모의 조건은 Zong and Nepf (2012)의 수리실험을 참고하여 수로의 길이는 12 m, 폭은 1.2 m로 설정하였다. 0.13 m 수심을 갖는 개수로에 0.22 m 지름을 갖는 원형식생을 상류경계로부터 1.0 m 떨어진 곳에 설정하였다. 식생의 밀도($6{\sim}77m^{-1}$)를 변화시키면서 원형식생 하류의 흐름거동을 분석하였다. 식생밀도가 높은 경우에는 원형식생 양 측면에서 유발된 전단층들의 상호작용에 의해 하류에서 와류가 발생하였다. 와류가 발생하는 위치에서 난류강도가 가장 크게 나타났다. 그러나 식생밀도가 일정 값보다 낮아지면 와류가 발생하지 않는 것으로 나타났다.

  • PDF

Performance Assessment of Turbulence Models for the Prediction of Tip Leakage Flow in an Axial-Flow Turbomachinery (축류형 유체기계에서 익단 누설 유동 해석을 위한 난류 모델 성능 평가)

  • Lee, Gong-Hee;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1655-1666
    • /
    • 2003
  • It is experimentally well-known that high anisotropies of the turbulent flow field are dominant inside the tip leakage vortex, which is attributable to a substantial proportion of the total loss and constitutes one of the dominant mechanisms of the noise generation. This anisotropic nature of turbulence invalidates the use of the conventional isotropic eddy viscosity turbulence models based on the Boussinesq assumption. In this study, to check whether an anisotropic turbulence model is superior to the isotropic ones or not, the results obtained from the steady-state Reynolds averaged Navier-Stokes simulations based on the RNG k-$\varepsilon$ model and the Reynolds stress model (RSM) are compared with experimental data for two test cases: a linear compressor cascade and a forward-swept axial-flow fan. Through this comparative study of turbulence models, it is clearly shown that the RSM, which can express the production term and body-force term induced by system rotation without introducing any modeling, should be used to predict quantitatively the complex tip leakage flow, especially in the rotating environment.

A Numerical Study on the Aerodynamic Characteristics of a Bus-Like Bluff Body - Effect of Turbulence Model and Discretisation Scheme - (버스형상 무딘물체의 공력특성에 관한 수치해석적 고찰 - 난류모델과 이산화법의 영향 -)

  • 김민호;국종영;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.115-123
    • /
    • 2003
  • With the advent of high performance computers and more efficient numerical algorithms, computational fluid dynamics(CFD) has come out as a modem alternative for reducing the use of wind tunnels test in automotive engineering. However, in spite of the fact that many competent researchers have made all their talents in developing turbulence model over since the past dozen or more years, it has been an important impediment in using the CFD effectively to design machinery and to diagnose or to improve engineering problems in the industry since the turbulence model has been acting as the Achilles' tendon in aspect of the reliability even to this time. In this study, Reynolds-averaged Wavier-Stokes equations were solved to simulate an incompressible turbulent flow around a bus-like bluff body near ground plane. In order to investigate the effect of the discretisation schemes and turbulence model on the aerodynamic forces several turbulence models with five convective difference schemes are adopted. From the results of this study, it is clear that choice of turbulence model and discretisation scheme profoundly affects the computational outcome. The results also show that the adoption of RNG $k-\varepsilon$ turbulence model and nonlinear quadratic turbulence model with the second order accurate discretisation scheme predicts fairly well the aerodynamic coefficients.