• Title/Summary/Keyword: k-$\omega$

Search Result 3,472, Processing Time 0.031 seconds

Characteristics of Al-doped ZnO thin films prepared by sol-gel method (졸-겔법으로 제조한 Al-doped ZnO 박막의 특성에 관한 연구)

  • Kim, Yong-Nam;Lee, Seoung-Soo;Song, Jun-Kwang;Noh, Tai-Min;Kim, Jung-Woo;Lee, Hee-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.50-55
    • /
    • 2008
  • AI-doped ZnO(AZO) thin films have been fabricated on glass substrate by sol-gel method, and the effect of Al precursors and post-annealing temperature on the characteristics of AZO thin films was investigated. The sol was prepared with zinc acetate, EtOH, MEA and Al precursors. In order to dope Al in ZnO, two types of aluminum nitrate and aluminum chloride were used as Al precursor. Zinc concentration was 0.5 mol/l and the content of Al precursor was 1 at% of Zn in the sol. The sol was spin-coated on glass substrate, and the coated films were annealed at 550ue for 2 hand were post-annealed at temperature ranges of $300{\sim}500^{\circ}C$ for 2 h in reducing atmosphere ($N_2/H_2$= 9/1). Structural, electrical and optical propertis of the fabricated AZO thin films were analyzed by XRD, FE-SEM, AFM, hall effect measurement system and UV-visible spectroscopy. Optical and electrical properties of AZO thin films prepared with aluminum nitrate as Al precursor were better than those of films prepared with aluminum chloride. The electrical resistivity and the optical transmittance of films decreased with increasing post-annealing temperatures. The minimum electrical resistivity of $2{\times}10^{-3}$ and the maximum optical transmittance of 91% were obtained for the AZO thin films post-annealed at $550^{\circ}C\;and\;300^{\circ}C$, respectively.

Electrical Properties of Eco-Friendly RuO2-Based Thick-Film Resistors Containing CaO-ZnO-B2O3-Al2O3-SiO2 System Glass for AlN Substrate (Electrical Properties of Eco-Friendly RuO2-Based Thick-Film Resistors Containing CaO-ZnO-B2O3-Al2O3-SiO2 계 유리가 적용된 질화알루미늄 기판용 RuO2계 친환경 후막저항의 전기적 특성 연구)

  • Kim, Min-Sik;Kim, Hyeong-Jun;Kim, Hyung-Tae;Kim, Dong-Jin;Kim, Young-Do;Ryu, Sung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.467-473
    • /
    • 2010
  • The objective of this study is to prepare lead-free thick film resistor (TFR) paste compatible with AlN substrate for hybrid microelectronics. For this purpose, CaO-ZnO-$B_2O_3-Al_2O_3-SiO_2$ glass system was chosen as a sintering aid of $RuO_2$. The effects of the weight ratio of CaO to ZnO in glass composition, the glass content and the sintering temperature on the electrical properties of TFR were investigated. $RuO_2$ as a conductive and glass powder were dispersed in an organic binder to obtain printable paste and then thick-film was formed by screen printing, followed by sintering at the range between $750^{\circ}C$ and $900^{\circ}C$ for 10 min with a heating rate of $50^{\circ}C$/min in an ambient atmosphere. The addition of ZnO to glass composition and sintering at higher temperature resulted in increasing sheet resistance and decreasing temperature coefficient of resistance. Using $RuO_2$-based resistor paste containing 40 wt%glass of CaO-20.5%ZnO-25%$B_2O_3$-7%$Al_2O_3$-15%$SiO_2$ composition, it is possible to produce thick film resistor on AlN substrate with sheet resistance of $10.6\Omega/\spuare$ and the temperature coefficient of resistance of 702ppm/$^{\circ}C$ after sintering at $850^{\circ}C$.

Enhancement of PTCR Characteristics of MnO2 Doped Lead Free BaTiO3-(Bi0.5Na0.5)TiO3 Ceramics with High Tc (>165℃) (MnO2가 도핑된 무연 High Tc (>165℃) BaTiO3-(Bi0.5Na0.5)TiO3 세라믹의 PTCR 특성 향상)

  • Kim, Kyoung-Bum;Jang, Young-Ho;Kim, Chang-Il;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Lee, Woo-Young;Kim, Dae-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.723-727
    • /
    • 2011
  • 0.935Ba$TiO_3$-0.065($Bi_{0.5}Na_{0.5}$)$TiO_3+xmol%MnO_2$ (BBNTM-x) ceramics with $0{\leq}x{\leq}0.05$ were fabricated with muffled sintering by a modified synthesis process. Their microstructure and enhanced positive temperature coefficient of resistivity (PTCR) characteristics were systematically investigated in order to obtain lead-free high TC PTCR thermistors. All specimens showed a perovskite structure with a tetragonal symmetry and no secondary phase was observed. Grain growth was achieved when the doped MnO2 was increased above 0.02 mol%. This is due to the effect of positive Mn ion doping as an acceptor compensating a Ba vacancy occurred by the higher donor dopant concentration of $Bi^{3+}$ ion. Especially, enhanced PTCR characteristics of the extremely low ${\rho}_{RT}$ of $9\;{\Omega}{\cdot}cm$, PTCR jump of $5.1{\times}10^3$, ${\alpha}$ of 15.5%/$^{\circ}C$ and high $T_C$ of $167^{\circ}C$ were achieved for the BBNTM-0.04 ceramics.

Rheological Properties of Sweet Potato Starch-sucrose Composite (고구마전분-sucrose 복합물의 레올로지 특성)

  • Cho, Sun-A;Yoo, Byoung-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.184-189
    • /
    • 2008
  • Effects of sucrose at different concentrations (0, 10, 20, and 30%, w/w) on steady and dynamic shear rheological properties of sweet potato starch (SPS) paste (5%, w/w) were investigated. The steady shear rheological properties of SPS-sucrose composites were determined from rheological parameters based on power law and Casson flow models. At 25$^{\circ}C$ all the samples showed pseudoplastic and thixoropic behavior with high yield stress. Consistence index (K), apparent viscosity (${\eta}_{a,100}$), and yield stress (${\sigma}_{oc}$) values of SPS-sucrose composites decreased with increasing sucrose concentration from 10% to 30%. The decrease of swelling power was observed at higher sucrose concentration (>20%) and the low swelling power yielded a lower K, ${\eta}_{a,100}$, and ${\sigma}_{oc}$ values. In temperature range of 25-70$^{\circ}C$, Arrhenius equation adequately assessed variation with temperature. Oscillatory test data showed weak gel-like behavior. Magnitudes of storage (G') and loss (G") moduli increased with an increase in sucrose concentration and frequency. The SPS-sucrose composite at 30% concentration closely followed the Cox-Merz superposition rule.

RHEOLOGICAL PROPERTIES OF RESIN COMPOSITES ACCORDING TO THE CHANGE OF MONOMER AND FILLER COMPOSITIONS (단량체 및 무기질 filler 조성 변화에 따른 복합레진의 유변학적 특성)

  • Lee In-Bog;Lee Jong-Hyuck;Cho Byung-Hoon;Son Ho-Hyun;Lee Sang-Tag;Um Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.6
    • /
    • pp.520-531
    • /
    • 2004
  • The aim of this study was to investigate the effect of monomer and filler compositions on the rheological properties related to the handling characteristics of resin composites. Methods. Resin matrices that Bis-GMA as base monomer was blended with TEGDMA as diluent at various ratio were mixed with the Barium glass (0.7 um and 1.0 um), 0.04 um fumed silica and 0.5 um round silica. All used fillers were silane treated. In order to vary the viscosity of experimental composites, the type and content of incorporated fillers were changed, Using a rheometer, a steady shear test and a dynamic oscillatory shear test were used to evaluate the viscosity ($\eta$) of resin matrix, and the storage shear modulus (G'), the loss shear modulus (G"), the loss tangent ($tan{\delta}$) and the complex viscosity (${\eta}^*$) ofthe composites as a function of frequency ${\omega}{\;}={\;}0.1-100{\;}rad/s$. To investigate the effect of temperature on the viscosity of composites, a temperature sweep test was also undertaken. Results. Resin matrices were Newtonian fluid regardless of diluent concentration and all experimental composites exhibited pseudoplastic behavior with increasing shear rate. The viscosity of composites was exponentially increased with increasing filler volume%. In the same filler volume, the smaller the fillers were used, the higher the viscosities were. The effect of filler size on the viscosity was increased with increasing filler content. Increasing filler content reduced $tan{\delta}$ by increasing the G' further than the G". The viscosity of composites was decreased exponentially with increasing temperature.

Inhibitory Effect of Linum usitatissimum and Perilla frutescens as Sources of Omega-3 Fatty Acids on Mutagenicity and Growth of Human Cancer Cell Lines (식물성 오메가-3계 지방산 급원인 아마씨 및 들깨의 항돌연변이 및 암세포 증식 억제 효과)

  • Lim, Sun-Young
    • Journal of Life Science
    • /
    • v.19 no.12
    • /
    • pp.1737-1742
    • /
    • 2009
  • It has been known that Linum usitatissimum and Perilla frutescens are dietary sources of possible chemopreventive compounds such as lignans and $\alpha$-linolenic acid. Here, we investigated and compared the inhibitory effects of methanol extracts from Linum usitatissimum and Perilla frutescens on mutagenicity using the Ames test, and growth of human cancer cells (AGS human gastric adenocarcinoma, HT-29 human colon cancer, Hep 3B hepatocellular carcinoma cells). In the Ames test system using Salmonella typhimurium TA100, aflatoxin $B_1$ ($AFB_1$)-induced mutagenicity was significantly inhibited by treatment with the methanol extract from either Linum usitatissimum or Perilla frutescens (p<0.05) in a dose dependent manner. As for N-methyl-N'-nitro-N-nitrosoguamidine (MNNG)-induced mutagenicity, the methanol extracts (5 mg/assay) from Linum usitatissimum and Perilla frutescens showed 63% and 78% inhibitory rates, respectively, indicating that Perilla frutescens possessed stronger antimutagenic activity than did Linum usitatissimum. Inhibitory effects of methanol extracts from Linum usitatissimum and Perilla frutescens on the growth of human cancer cells (AGS, HT-29 and Hep 3B) appeared to increase dose dependently, and the inhibition was more effective against AGS and HT-29 compared to Hep 3B cells. Our results suggested that the methanol extract from Perilla frutescens showed stronger antimutagenic activity than that from Linum usitatissimumas assayed by the Ames mutagenic test, whereas the methanol extract from Linum usitatissimum was more effective than its counterpart for growth inhibition of human cancer cells. It is concluded that intake of Linum usitatissimum and Perilla frutescens as sources of omega-3 fatty acids will be beneficial for preventing cancer.

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

The Effect of Chemical Composition and Sintering Temperature on the Experiment of Physical Properties of Ni-Zn Ferrite (Ni-Zn Ferrite의 조성성분 및 소결온도에 따른 물리적 특성의 실험적 연구)

  • Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.5
    • /
    • pp.255-260
    • /
    • 2006
  • The basic composition of Ni-Zn ferrite was $(Ni_{0.35}Cu_{0.2}Zn_{0.45})_{1.02}(Fe_2O_3)_{0.98}$ (group A) and $(Ni_{0.4}Cu_{0.2}Zn_{0.4})_{1.02}(Fe_2O_3)_{0.98}$(group B) with additional 0.1 mol% $CaCO_3$ and 0.03 mol% $V_2O_5$. For high permeability and acceleration of grain growth, $CaCO_3$ and $V_2O_5$ was added. The mixture of the law materials was calcinated at $600^{\circ}C$ for 2 hours and then milled. The compacts of toroidal type were sintered at different temperature ($1,050^{\circ}C,\;1,070^{\circ}C,\;1,100^{\circ}C$) for 2 hours in air followed by an air cooling. Then, effects of various composition and sintering temperatures on the microstructure and physical properties such as density, resistivity, magnetic induction, coercive force, initial permeability, quality factor, and curie temperature of the Ni-Zn ferrite were investigated. The density of the Ni-Zn ferrite was $4.90{\sim}5.10g/cm^3$, resistivity revealed $10^8{\sim}10^{12}{\Omega}-cm$. The average grain size increased with the increase of sintering temperatures. The magnetic properties obtained from the aforementioned Ni-Zn ferrite specimens were 4,000 gauss for the maximum induction, 0.25 oersted for the coercive force, 2,997 for the initial permeability, 208 for the quality factor, and $202^{\circ}C$ for the curie temperature. The physical properties indicated that the specimens could be utilized as the core of microwave communication and high permeability deflection yoke of high permeability.

Deposition of ZnO Thin Films by RF Magnetron Sputtering and Cu-doping Effects (RF 마그네트론 스퍼터링에 의한 ZnO박막의 증착 및 구리 도우핑 효과)

  • Lee, Jin-Bok;Lee, Hye-Jeong;Seo, Su-Hyeong;Park, Jin-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.12
    • /
    • pp.654-664
    • /
    • 2000
  • Thin films of ZnO are deposited by using an RF magnetron sputtering with varying the substrate temperature(RT~39$0^{\circ}C$) and RF power(50~250W). Cu-doped ZnO(denoted by ZnO:Cu) films have also been prepared by co-spputtering of a ZnO target on which some Cu-chips are attached. Different substrate materials, such as Si, $SiO_{2}/Si$, sapphire, DLC/Si, and poly-diamond/Si, are employed to compare the c-axial growth features of deposited ZnO films. Texture coefficient(TC) values for the (002)-preferential growth are estimated from the XRD spectra of deposited films. Optimal ranges of RF powers and substrate temperatures for obtaining high TC values are determined. Effects of Cu-doping conditions, such as relative Cu-chip sputtering areas, $O_{2}/(Ar+O_{2})$ mixing ratios, and reactor pressures, on TC values, electrical resistivities, and relative Cu-compositions of deposited ZnO:Cu films have been systematically investigated. XPS study shows that the relative densities of metallic $Cu(Cu^{0})$ atoms and $CuO(Cu^{2+})$-phases within deposited films may play an important role of determining their electrical resistivities. It should be noted from the experimental results that highly resistive(> $10^{10}{\Omega}cm$ ZnO films with high TC values(> 80%) can be achieved by Cu-doping. SAW devices with ZnO(or Zn):Cu)/IDT/$SiO_{2}$/Si configuration are also fabricated to estimate the effective electric-mechanical coupling coefficient($k_{eff}^{2}$) and the insertion loss. It is observed that the devices using the Cu-doped ZnO films have a higher $k_{eff}^{2}$ and a lower insertion loss, compared with those using the undoped films.

  • PDF

Design of eFuse OTP Memory with Wide Operating Voltage Range for PMICs (PMIC용 넓은 동작전압 영역을 갖는 eFuse OTP 설계)

  • Jeong, Woo-Young;Hao, Wen-Chao;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.115-122
    • /
    • 2014
  • In this paper, reliability is secured by sensing a post-program resistance of several tens of kilo ohms and restricting a read current flowing over an unblown eFuse within $100{\mu}A$ since RWL driver and BL pull-up load circuits using a regulated voltage of V2V ($=2V{\pm}10%$) are proposed to have a wide operating voltage range for eFuse OTP memory. Also, when a comparison of a cell array of 1 row ${\times}$ 32 columns with that of 4 rows ${\times}$ 8 columns is done, the layout size of 4 rows ${\times}$ 8 columns is smaller with $187.065{\mu}m{\times}94.525{\mu}m$ ($=0.01768mm^2$) than that of 1 row ${\times}$ 32 columns with $735.96{\mu}m{\times}61.605{\mu}m$ ($=0.04534mm^2$).