• Title/Summary/Keyword: k-$\omega$

Search Result 3,473, Processing Time 0.039 seconds

Comparative Analysis of Flow Characteristics Using Reflected Pressure Wave at Crossing of Subway Trains in Straight Tunnel (직선터널에서 지하철 열차의 교차운행 시 반사파 간섭에 따른 유동 특성 비교분석)

  • Lee, Deuksun;Cho, Jungmin;Lee, Myeongho;Sung, Jaeyong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.3
    • /
    • pp.123-129
    • /
    • 2018
  • In this study, CFD is used to compare and analyze the flow characteristics using reflected pressure wave during the intersection of two trains in straight tunnel. Two tunnels of different lengths; 600 m and 3,400 m were designed and numerical analysis of the flow characteristics of two tunnels carried out by setting the crossing state of the two trains at a constant velocity of 27 m/s form the center of the tunnel. The simulation model was designed using the actual tunnel and subway dimensions The train motion was achieved by using the moving mesh method. For the numerical analysis, $k-{\omega}$ standard turbulence model and an ideal gas were used to set the flow conditions of three-dimensional, compressible and unsteady state. In the analysis results, it was observed that the inside of the long tunnel without interference of the reflected pressure wave was maintained at a pressure lower than the atmospheric pressure and that the flow direction was determined by the pressure gradient and shear flow. On the other hand, the flow velocity in the short tunnel was faster and the pressure fluctuation was noted to have increased due to the reflected pressure wave, with more vortices formed. In addition, the flow velocity was noted to have changed more irregularly.

Partial Discharge Characteristics of Metallic Particles Under HVDC in SF6 Gas (SF6 가스 중 HVDC에서 금속 파티클의 부분방전 특성)

  • Kim, Sun-Jae;Jo, Hyang-Eun;Wang, Guoming;Yun, Min-Young;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.831-836
    • /
    • 2015
  • This paper dealt with the PD (partial discharge) characteristics produced by metallic particles presented in a gas insulated switchgear. Four types of metallic particles such as a ball, a trapezoid, a rectangle, and a twist were fabricated and placed in a PD cell filled with $SF_6$ gas. PD pulses were detected through a $50{\Omega}$ non-inductive resistor. Calibration was carried out according to IEC 60270 and the sensitivity was calculated as 4 mV/pC. Apparent charge, pulse count, DIV (discharge inception voltage), DEV (discharge extinction voltage), and TRPD (time resolved partial discharge) were analyzed. Among the metallic particle types, the twist frequently occurred PD pulse at the lowest DIV, while the rectangle showed the highest. DEV of the twist was about 2 times lower than that for the rectangle. Kurtosis of ball clustered at high value, and skewness of other three metallic particles distributed at low value. TRPD showed different distribution by metallic particle types.

Indium doped ZnO:Al thin films prepared by pulsed laser deposition for transparent conductive oxide electrode applications (펄스 레이저 방법으로 증착된 투명 산화물 전극용 인듐이 도핑된 ZnO:Al 박막)

  • Xian, Cheng-Ji;Lee, Chang-Hyun;Lee, Ye-Na;Seong, Nak-Jin;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.27-27
    • /
    • 2008
  • The different concentration Indium doped ZnO:Al films were grown on glass substrates (Corning 1737) at $200^{\circ}C$ by pulsed laser deposition. The indium doping in AZO films shows the critical effect on the crystallinity, resistivity, and optical properties of the films. The AZO films doped with 0.3 atom % indium content exhibit the highest crystallinity, the lowest resistivity of $4.5\times10^{-4}\Omega$-cm, and the maximum transmittance of 93%. The resistivity of the indium doped-AZO films is strongly related with the crystallinity of the films. The carrier concentration in the indium doped-AZO films linearly increases with increasing indium concentration. The mobility of the AZO films with increasing indium concentration was reduced with an increase in carrier concentration and the decrease in mobility was attributed to the ionized impurity scattering mechanism. In an optical transmittance, the shift of the optical absorption edge to shorter wavelength strongly depends on the electronic carrier concentration in the films.

  • PDF

Effect of the YAG with fracture toughness and electric conductive of $\beta$-Sic-$TiB_2$ ($\beta$-Sic-$TiB_2$복합체의 파괴인성과 전기전도도젠 미치는 YAG의 영향)

  • Yoon, Se-Won;Ju, Jin-Young;Shin, Yong-Deok;Yeo, Dong-Hun;Park, Ki-Yub
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1545-1547
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta$-Sic-$TiB_2$ electroconductive ceramic composites were investigated as function of the liquid forming additives of $Al_{2}O_{3}+Y_{2}O_3$. Phase analysis of composites by XRD revealed $\alpha$-SiC(6H), $TiB_2$, and YAG($Al_{5}Y_{3}O_{12}$). The relative density and the mechanical properties of composites were increased with increasing $Al_{2}O_{3}+Y_{2}O_3$ contents because YAG of reaction between $Al_{2}O_3$ and $Y_{2}O_3$ was increased. The Flexural strength showed the highest value of 432.5MPa for composites added with l2wt% $Al_{2}O_{3}+Y_{2}O_3$ additives at room temperature. Owing to crack deflection, crack bridging, phase transition and YAG of fracture toughness mechanism. the fracture toughness showed 7.1MPa${\cdot}m^{1/2}$. For composites added with l2wt% $Al_{2}O_{3}+Y_{2}O_3$ additives at room temperature The electrical resistivity and the resistance temperature coefficient respectively showed the lowest of 6.0${\sim}10^{-4}{\Omega}{\cdot}$ cm and 3.1${\times}10^{-3}/^{\circ}C$ for composite added with l2wt% $Al_{2}O_{3}+Y_{2}O_3$ additives at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of 25$^{\circ}C$ to 700$^{\circ}C$.

  • PDF

Characterization of arsenic doped p-type ZnO thin film (As 토핑된 p형 ZnO 박막의 특성 분석)

  • Kim, Dong-Lim;Kim, Gun-Hee;Chang, Hyun-Woo;Ahn, Byung-Du;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.53-54
    • /
    • 2006
  • Arsenic doped p-type ZnO thin films have been realized on intrinsic (100) GaAs substrate by RF magnetron sputtering and thermal annealing treatment. p-Type ZnO exhibits the hole concentration of $9.684{\times}10^{19}cm^3$, resistivity of $2.54{\times}10^{-3}{\Omega}cm$, and mobility of $25.37\;cm^2/Vs$. Photoluminescence (PL) spectra of As doped p-type ZnO thin films reveal neutral acceptor bound exciton ($A^{0}X$) of 3.3437 eV and a transition between free electrons and acceptor levels (FA) of 3.2924 eV. Calculated acceptor binding energy ($E_A$) is about 0.1455 eV. Thermal activation and doping mechanism of this film have been suggested by using X-ray photoelectron spectroscopy (XPS). p-Type formation mechanism of As doped ZnO thin film is more related to the complex model, namely, $As_{Zn}-2V_{Zn}$, in which the As substitutes on the Zn site, rather than simple model, Aso, in which the As substitutes on the O site. ZnO-based p-n junction was fabricated by the deposition of an undoped n-type ZnO layer on an As doped p-type ZnO layer.

  • PDF

Analysis of Conjugated Heat Transfer for the Diffuser Exposed to Hot Combustion Gas (고온 연소가스에 노출되는 디퓨저의 복합 열전달량 계산)

  • Jin, Sang-Wook;Na, Jae-Jung;Rhe, Sang-Ho;Lee, Kyu-Jun;Lim, Jin-Shik;Kim, Sung-Don
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.231-234
    • /
    • 2010
  • Analysis of conjugated heat transfer has been conducted for the diffuser exposed to hot combustion gas to design the mechanical durability in high temperature. All the heat transfer means, conduction, convection and radiation have been considered to calculate the total heat flux from hot gas to diffuser surface. The calculation has been implemented by two kinds of methods. One thing is one dimensional method based on empirical equations. The other is CFD(Computational Fluid Dynamics) axisymmetric calculation containing ${\kappa}-{\omega}$ SST(Shear Stress Transport) turbulent model and DO(Discrete Ordinate) radiation model. The derived results of two methods have compared and showed similar values. From this result, the amount of cooling water and the dimension of water cooling channel were decided.

  • PDF

Effect of the Advance Ratio on the Evolution of Propeller Wake (전진비가 추진기 후류에 미치는 영향)

  • Baek, Dong Geun;Yoon, Hyun Sik;Jung, Jae Hwan;Kim, Ki-Sup;Paik, Bu-Geun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • The present study numerically investigated the effect of the advance ratio on the wake characteristics of the marine propeller in the propeller open water test. Therefore, a wide range of the advance ratio(0.2${\kappa}-{\omega}$SST Model are considered. The three-dimensional vortical structures of tip vortices are visualized by the swirl strength, resulting in fast decay of the tip vortices with increasing the advance ratio. Furthermore, to better understanding of the wake evolution, the contraction ratio of the slip stream for different advance ratios is extracted from the velocity fields. Consequently, the slip stream contraction ratio decreases with increasing the advance ratio and successively the difference of the slip stream contraction ratio between J=0.2 and J=0.8 is about 0.1R.

High Quality Nickel Atomic Layer Deposition for Nanoscale Contact Applications

  • Kim, Woo-Hee;Lee, Han-Bo-Ram;Heo, Kwang;Hong, Seung-Hun;Kim, Hyung-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.22.2-22.2
    • /
    • 2009
  • Currently, metal silicides become increasingly more essential part as a contact material in complimentary metal-oxide-semiconductor (CMOS). Among various silicides, NiSi has several advantages such as low resistivity against narrow line width and low Si consumption. Generally, metal silicides are formed through physical vapor deposition (PVD) of metal film, followed by annealing. Nanoscale devices require formation of contact in the inside of deep contact holes, especially for memory device. However, PVD may suffer from poor conformality in deep contact holes. Therefore, Atomic layer deposition (ALD) can be a promising method since it can produce thin films with excellent conformality and atomic scale thickness controllability through the self-saturated surface reaction. In this study, Ni thin films were deposited by thermal ALD using bis(dimethylamino-2-methyl-2-butoxo)nickel [Ni(dmamb)2] as a precursor and NH3 gas as a reactant. The Ni ALD produced pure metallic Ni films with low resistivity of 25 $\mu{\Omega}cm$. In addition, it showed the excellent conformality in nanoscale contact holes as well as on Si nanowires. Meanwhile, the Ni ALD was applied to area-selective ALD using octadecyltrichlorosilane (OTS) self-assembled monolayer as a blocking layer. Due to the differences of the nucleation on OTS modified surfaces toward ALD reaction, ALD Ni films were selectively deposited on un-coated OTS region, producing 3 ${\mu}m$-width Ni line patterns without expensive patterning process.

  • PDF

Structural and Optical Properties of ZnO Thin Films Grown on SiO2/Si(100) Substrates by RF Magnetron Sputtering (RF 마그네트론 스퍼터링 방법으로 SiO2/Si(100) 기판위에 성장시킨 ZnO 박막의 구조 및 광특성)

  • Han Seok Kyu;Hong Soon-Ku;Kim Hyo-Jin;Lee Jae-Wook;Lee Jeong-Yong
    • Korean Journal of Materials Research
    • /
    • v.16 no.6
    • /
    • pp.360-366
    • /
    • 2006
  • A series of ZnO thin films were grown by radio-frequency (RF) magnetron sputtering with various RF powers on $SiO_2/Si$(100) substrates at $500^{\circ}C$. Thicknesses of the investigated ZnO films were fixed to about 250nm by changing the growth time based on the changes of growth rates with RF powers. All the ZnO thin films were grown with <0001> preferred orientation. Average grain sizes of about 250nm-thick ZnO films evaluated by FE-SEM, AFM, and TEM were increased by decreasing the RF power. Structural properties addressed by FWHM values of XRD (0002) omega rocking curves and their intensities were better for the smaller grain sized ZnO films grown with high RF powers, which implies small values of tilt for smaller grain sized ZnO films. However, optical properties addressed by intensities of band edge emissions from room temperature and low temperature photoluminescence were better for the larger grain sized ZnO films with low RF power, which implies grain boundaries acted as nonradiation recombination centers.

Conjugate Heat Transfer Analysis for High Pressure Cooled Turbine Vane in Aircraft Gas Turbine (항공기용 가스터빈의 고압 냉각터빈 노즐에 대한 복합열전달 해석)

  • Kim, Jinuk;Bak, Jeonggyu;Kang, Young-Seok;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.60-66
    • /
    • 2015
  • Conjugate heat transfer analysis was performed to investigate the flow and cooling performance of the high pressure turbine nozzle of gas turbine engine. The CHT code was verified by comparison between CFD results and experimental results of C3X vane. The combination of k-${\omega}$ based SST turbulence model and transition model was used to solve the flow and thermal field of the fluid zone and the material property of CMSX-4 was applied to the solid zone. The turbine nozzle has two internal cooling channels and each channel has a complex cooling configurations, such as the film cooling, jet impingement, pedestal and rib turbulator. The parabolic temperature profile was given to the inlet condition of the nozzle to simulate the combustor exit condition. The flow characteristics were analyzed by comparing with uncooled nozzle vane. The Mach number around the vane increased due to the increase of coolant mass flow flowed in the main flow passage. The maximum cooling effectiveness (91 %) at the vane surface is located in the middle of pressure side which is effected by the film cooling and the rib turbulrator. The region of the minimum cooling effectiveness (44.8 %) was positioned at the leading edge. And the results show that the TBC layer increases the average cooling effectiveness up to 18 %.