• Title/Summary/Keyword: joint system

Search Result 3,757, Processing Time 0.037 seconds

Development of Communication Joint Tools for Implementing a Legacy-line Communication System in a Train (열차 내 무배선통신시스템 구축을 위한 통신연결장치 개발)

  • Kim, Hyun Sik;Park, Soo Hoon;Kang, Seog Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.877-887
    • /
    • 2015
  • In this paper, a design of communication joint tools to implement a legacy-line communication (LLC) system, which exploits various conductive lines in a train, is presented. We develop two kinds of joint tools; one is a conductive joint tool (CJT) that is connected directly to the conventional lines and the other is the inductive joint tool (IJT) which connects the conventional lines indirectly using electromagnetic induction. As a result, the practical experiment of data communication confirms that an LLC system with the developed joint tools has a transmission rate more than 20 Mbps in the distance of 200 m away. In addition, an environmental durability test shows that the joint tools operate stably in an extreme environmenal variation. It is, therefore, considered that the developed joint tools are very useful to implement a communication network in the train working currently.

Joint disturbance torque analysis for robots and its application in straight line path placement (로봇의 관절외란해석을 이용한 직선궤적 위치결정)

  • ;Choi, Myuoung Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1824-1827
    • /
    • 1997
  • Majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is influenced greatly by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and makes the high speed-high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2DOF planar robot, the conditions for the maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solutioin to the optimal path placement problem is proposed that minimizes the joint disturbance torque are examined. then, a solution to the optimal path placement problem is proposed that minimizes the joint disturbance torque during a straight line motion. the proposed method is illustrated using computer simulation. the proposed solution method cna be applied to the class of robots that are controlled by independent joint sevo control, which includes the vast majority of industrial robots. By minimizing the joint disturbacne torque during the motion, the simple joint servo controlled robot can move with improved path tracking accuracy at high speed.

  • PDF

The Scientific Research of Rehabilitation Training Program Participants in Stroke Patients (재활운동에 참가한 뇌졸중환자의 운동과학적 연구)

  • Jin, Young-Wan
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1704-1710
    • /
    • 2010
  • The purpose of this study was to describe the biomechanical characteristics of stroke patients. These characteristics were obtained during walking on a Zebris system, cinematography system and EMG system. Seven female stroke patients participated in this study. The magnitude of the profiles (joint peak angle, joint peak moments, foot pressure COP, EMG data) correlated with rehabilitation training duration using t-test. The significance level selected for this study was p<0.05, t-test. Joint analysis identified significant differences in hip joint peak angle and hip joint peak moment. Foot pressure verified significant differences in gait line length of COP. The EMG signal proved significant differences in rectus femoris and vastus lateralis.

Design of Airborne Terminal System for Joint Tactical Data Link System Complete Data-link

  • Choi, Hyo-Ki;Yoon, Chang-Bae;Hong, Seok-Jun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.139-147
    • /
    • 2020
  • In this paper, design measure were proposed for the construction of terminal systems for airborne platforms, which are key element in the Joint Tactical Data Link System (JTDLS) complete system. The Korean perfect tactical data link (JTDLS) is a communication system to establish an independent tactical data link network and needs to develop a MIDS-LVT (Link-16) communication terminal for datalink. Once a Ground/Navy JTDLS terminal system is established around airborne platform, it will be possible to break away from reliance on NATO-based tactical data link joint operations and establish independent Korean surveillance reconnaissance real-time data sharing and tactical data link operations concepts. in this paper, the essential development elements of airborne platform mounting and operable JTDLS terminals are presented, and the concept of system design is proposed to embody them. Further, improved system performance was analyzed by applying the concepts of complex relative navigation system and Advanced TDMA protocol for the deployment of airborne tactical datalink networks.

A Study on the Optimal Position of Lightning Arrester on Joint Operation of Neutral Wire and Overhead Grounding Wire through Lightning Surge Analysis in Combined Distribution System (혼합배전계통에서 뇌과전압 해석을 통한 중성선과 가공지선 혼용 운전시 적정 피뢰기 위치에 관한 연구)

  • Jeong, Seok-San;Jang, Hwa-Youn;An, Chun-Yong;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.535-536
    • /
    • 2011
  • This paper studies the validity about a joint operation of neutral wire and overhead grounding wire in combined distribution systems. The overhead grounding wire and neutral wire are currently installed separately and grounded by common. However there is no any ineffectiveness or electrical problem in case of the proposed system, such system can be operated at real distribution system. Therefore this paper describes the suitability of a joint operation through lightning surge analysis on combined distribution systems and analyzes the optimal position of lightning arrester on joint operation of neutral wire and overhead grounding wire. Lightning surge analysis is carried out by EMTP/ATPDraw to obtain the overvoltage of overhead line and underground cable in various conditions such as location and current types of lightning stroke. Over voltage gained by the analysis show that the insulation strength of the joint operation case is not stable compare with the current operation case.

  • PDF

A Simulation System of Total Knee Replacement Surgery for Extracting 3D Surgical Parameters (슬관절 전치환술용 3차원 시술변수 추출 시스템)

  • Jun, Yong-Tae
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.5
    • /
    • pp.315-322
    • /
    • 2011
  • The goal of total knee replacement (TKR) surgery is to replace patient's knee joint with artificial implants in order to restore normal knee joint functions. Since mismatched knee implants often cause a critical balancing problem and short durability, designing a well-fitted implant to a patient's knee joint is essential to improve surgical outcomes. We developed a software system that three-dimensionally (3D) simulates TKR surgery based upon 3D knee models reconstructed from computed tomography (CT) imaging. The main task of the system was to extract precise 3D anatomical parameters of a patient's knee that were directly used to determine a custom fit implant and to virtually perform TKR surgery. The virtual surgery was simulated by amputating a 3D knee model and positioning the determined implant components on the amputated knee. The test result shows that it is applicable to derive surgical parameters, determine individualized implant components, rehearse the whole surgical procedure, and train medical staff or students for actual TKR surgery. The feasibility and verification of the proposed system is described with examples.

Effects of Different Car Pedal Systems and Driving Skills on Drivers' Lower Extremity Postures during Fatigue (피로 시 운전 숙련도와 자동차 페달시스템 유형이 운전자의 하지자세에 미치는 영향)

  • Hah, Chong-Ku;Oh, Hyung-Sool;Jang, Young-Kwan;Yi, Jae-Hoon;Oh, Seong-Geun
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.4
    • /
    • pp.93-105
    • /
    • 2012
  • The purpose of this study was to investigate drivers' postures in different car pedal systems and skilled levels under fatigue. Twenty four subjects participated in this experiment. For three-dimensional analyses, six cameras (Proreflex MCU-240, Qualisys) were used to acquire raw data. The parameters were calculated and analyzed with Visual-3D. In conclusion, ROAs of two leg-pedal system were less than one leg pedal system by pattern analysis. Through statistical tests, skilled levels have effects on ROAs(X, Y, Z) of ankle joint at breaking a pedal and ROAs(Y, Z) of ankle joint at accelerating a pedal. Also, car pedal systems have effects on ROAs(Y, Z) of ankle joint, and ROA(Z) of knee joint at accelerating a pedal. In addition, skilled levels and car pedal systems (cross effects) have an effect on ROA(Z) of ankle joint. These findings suggested that we should improve a present single pedal system.

A Joint Allocation Algorithm of Computing and Communication Resources Based on Reinforcement Learning in MEC System

  • Liu, Qinghua;Li, Qingping
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.721-736
    • /
    • 2021
  • For the mobile edge computing (MEC) system supporting dense network, a joint allocation algorithm of computing and communication resources based on reinforcement learning is proposed. The energy consumption of task execution is defined as the maximum energy consumption of each user's task execution in the system. Considering the constraints of task unloading, power allocation, transmission rate and calculation resource allocation, the problem of joint task unloading and resource allocation is modeled as a problem of maximum task execution energy consumption minimization. As a mixed integer nonlinear programming problem, it is difficult to be directly solve by traditional optimization methods. This paper uses reinforcement learning algorithm to solve this problem. Then, the Markov decision-making process and the theoretical basis of reinforcement learning are introduced to provide a theoretical basis for the algorithm simulation experiment. Based on the algorithm of reinforcement learning and joint allocation of communication resources, the joint optimization of data task unloading and power control strategy is carried out for each terminal device, and the local computing model and task unloading model are built. The simulation results show that the total task computation cost of the proposed algorithm is 5%-10% less than that of the two comparison algorithms under the same task input. At the same time, the total task computation cost of the proposed algorithm is more than 5% less than that of the two new comparison algorithms.

Nonlinear Behavior of Composite Modular System's Joints (합성 모듈러 시스템 접합부의 비선형 거동 평가)

  • Choi, Young hoo;Lee, Jong il;Lee, Ho chan;Kim, Jin koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.153-160
    • /
    • 2021
  • The connection of the steel structure serves to transmit external forces to the main components. The same is true for the behavior of modular systems composed mainly of steel or composite members. In this study, the joint performance of the composite and steel modules proposed was evaluated. The analytical models of the two joint types were constructed and were subjected to cyclic loading to assess the safety and the energy dissipation capacity of the joint types. The analysis results of the joints showed that the joints of the modular systems remain stable when the joint rotation reached the seismic performance limit state of the 0.02 rad required for steel intermediate moment frame. It was also observed that the joint of the composite modular system showed higher energy dissipation capacity compared with the steel modular system.

Development of a 2D Posture Measurement System to Evaluate Musculoskeletal Workload (근골격계 부하 평가를 위한 2차원 자세 측정 시스템 개발)

  • Park, Sung-Joon;Park, Jae-Kyu;Choe, Jae-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.43-52
    • /
    • 2005
  • A two-dimensional posture measurement system was developed to evaluate the risks of work-related musculoskeletal disorders(MSDs) easily on various conditions of work. The posture measurement system is an essential tool to analyze the workload for preventing work-related musculoskeletal disorders. Although several posture measurement systems have been developed for workload assessment, some restrictions in industry still exist because of its difficulty on measuring work postures. In this study, an image recognition algorithm was developed based on a neural network method to measure work posture. Each joint angle of human body was automatically measured from the recognized images through the algorithm, and the measurement system makes it possible to evaluate the risks of work-related musculoskeletal disorders easily on various working conditions. The validation test on upper body postures was carried out to examine the accuracy of the measured joint angle data from the system, and the results showed good measuring performance for each joint angle. The differences between the joint angles measured directly and the angles measured by posture measurement software were not statistically significant. It is expected that the result help to properly estimate physical workload and can be used as a postural analysis system to evaluate the risk of work-related musculoskeletal disorders in industry.