• Title/Summary/Keyword: joint shear deformation

Search Result 123, Processing Time 0.027 seconds

Experimental study on the deformation characteristics of RC beam-column subassemblages

  • Guo, Zixiong;Yang, Yong
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.393-406
    • /
    • 2005
  • Cyclic loading tests were carried out on six half-scale reinforced concrete beam-column subassemblages designed to the current Chinese Seismic Design Code for Buildings. The deformation behavior and restoring force characteristics of the subassemblages were studied. Emphasis was directed on their seismic behavior and deformation components. Based on test data and a simplified analysis model of the global and local deformation, the contribution of the deformation components due to beam flexure, column flexure, joint shear, and slippage of longitudinal reinforcement in the joint to the global deformation of subassemblages at different displacement amplitudes of cyclic loading was investigated.

Studies on seismic performance of the new section steel beam-wall connection joint

  • Weicheng Su;Jian Liu;Changjiang Liu;Chiyu Luo;Weihua Ye;Yaojun Deng
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.501-519
    • /
    • 2023
  • This paper introduces a new hybrid structural connection joint that combines shear walls with section steel beams, fundamentally resolving the construction complexity issue of requiring pre-embedded connectors in the connection between shear walls and steel beams. Initially, a quasi-static loading scheme with load-deformation dual control was employed to conduct low-cycle repeated loading experiments on five new connection joints. Data was acquired using displacement and strain gauges to compare the energy dissipation coefficients of each specimen. The destruction process of the new connection joints was meticulously observed and recorded, delineating it into three stages. Hysteresis curves and skeleton curves of the joint specimens were plotted based on experimental results, summarizing the energy dissipation performance of the joints. It's noteworthy that the addition of shear walls led to an approximate 17% increase in the energy dissipation coefficient. The energy dissipation coefficients of dog-bone-shaped connection joints with shear walls and cover plates reached 2.043 and 2.059, respectively, exhibiting the most comprehensive hysteresis curves. Additionally, the impact of laminated steel plates covering composite concrete floors on the stiffness of semi-rigid joint ends under excessive stretching should not be disregarded. A comparison with finite element analysis results yielded an error of merely 2.2%, offering substantial evidence for the wide-ranging application prospects of this innovative joint in seismic performance.

Seismic resistance and mechanical behaviour of exterior beam-column joints with crossed inclined bars

  • Bakir, P.G.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.493-517
    • /
    • 2003
  • Attempts at improving beam-column joint performance has resulted in non-conventional ways of reinforcement such as the use of the crossed inclined bars in the joint area. Despite the wide accumulation of test data, the influence of the crossed inclined bars on the shear strength of the cyclically loaded exterior beam-column joints has not yet been quantified and incorporated into code recommendations. In this study, the investigation of joints has been pursued on two different fronts. In the first approach, the parameters that influence the behaviour of the cyclically loaded beam-column joints are investigated. Several parametric studies are carried out to explore the shear resisting mechanisms of cyclically loaded beam-column joints using an experimental database consisting of a large number of joint tests. In the second approach, the mechanical behaviour of joints is investigated and the equations for the principal tensile strain and the average shear stress are derived from joint mechanics. It is apparent that the predictions of these two approaches agree well with each other. A design equation that predicts the shear strength of the cyclically loaded exterior beam-column joints is proposed. The design equation proposed has three major differences from the previously suggested design equations. First, the influence of the bond conditions on the joint shear strength is considered. Second, the equation takes the influence of the shear transfer mechanisms of the crossed inclined bars into account and, third, the equation is applicable on joints with high concrete cylinder strength. The proposed equation is compared with the predictions of the other design equations. It is apparent that the proposed design equation predicts the joint shear strength accurately and is an improvement on the existing code recommendations.

Study on Evaluating Displacement Tolerance of Sky-bridge in Tall Buildings (고층 스카이브리지의 변위 허용치 산정에 대한 연구)

  • Kim, Yun Gon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.4
    • /
    • pp.135-142
    • /
    • 2020
  • The new method for evaluating the displacement tolerance of sky-bridges with pin-roller type supports was proposed considering both return period of phase difference between connected buildings and geometrical characteristics of skybridge. Because displacement tolerance is relative value, which is most affected by the phase difference of the connected buildings, the dynamic response of these building with time history analysis should be evaluated. However, the initial phase could not be specified, so the result of displacement tolerance would be varied with respect to initial value. Thus, the tolerance can be reasonably evaluated SRSS calculation with design displacements based on statistical approach and of each building. In addition, the geometrical characteristics of sky-bridge should be considered because the transverse displacement of sky-bridge span causes the shear deformation of the bridge and longitudinal displacement tolerance cannot release the shear deformation. Therefore, the some pin-end support in sky-bridge should have longitudinal displacement tolerance to accommodate the shear deformation. By resolving this shear deformation, it is possible not only to accommodate transverse displacement, but also to avoid the complicated joint details such as both pot bearing and guided supports with shear key.

A new steel panel zone model including axial force for thin to thick column flanges

  • Mansouri, Iman;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.417-436
    • /
    • 2014
  • During an earthquake, steel frame columns can be subjected to high axial forces combined with inelastic rotation demand resulting from story drift. Generally, the whole beam or component can be represented with one element. In elasto-plastic analysis, subdivision is necessary if the plastic deformation occurs within two ends of beams. If effects of the joint panel are necessarily considered in the analysis, the joint panel should be represented with an independent element. It is a special element to represent the shear deformation of the joint panel in the beam-column connection zone. Several analytical models for panel zone (PZ) behavior exist, in terms of shear force-shear distortion relationships. Among these models, the Krawinkler PZ model is the most popular one which is used in the AISC code. Some studies have pointed out that Krawinkler's model gives good results for the range of thin to medium column flanges thickness. This paper, introduces a new model to estimate the response of shear force-shear distortion for the PZ including column axial force. The model is applicable to both thin and thick column flange. To achieve an appropriate PZ mathematical model first, the effects of PZ strength and stiffness on connection response are parametrically studied using finite element models. More than one thousand and four-hundred beam-column connections are included in the parametric study, with varied parameters; then based on analytical results a simple mathematical model is presented. A comparison between the results of proposed method herein with FE analyses shows the average error especially in thick column flange is significantly reduced which demonstrates the accuracy, efficiency, and simplicity of the proposed model.

Force-Displacement Relationship Diagram for Shear Connections in Vertical Construction Joints of Slurry Walls (지하연속벽 수직시공이음부의 전단접합부에 대한 힘-변위 상관도)

  • Lee, Jeong-Young;Kim, Seung-Weon;Kim, Doo-Kie
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.397-398
    • /
    • 2023
  • To design the shear connections for vertical construction joints of slurry walls, it is necessary to create a force-displacement curve that represents the structural performance of the shear connections. This paper proposes a method for preparing the force-displacement curve of the shear connections including major considerations.

  • PDF

Nonlinear Analysis of Large Concrete Panel Structures subjected to Cyclic Loads (반복하중을 받는 대형 콘크리트 판구조의 비선형 해석)

  • 정봉오;서수연;이원호;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.113-120
    • /
    • 1994
  • Large Concrete Panel Structures behave quite differently from frame or monolithic shear wall structures because of the weakness of Joint in stiffness and strength. The joint experiences large deformation such as shear-slip in vertical and horizontal joint and rocking and crushing in horizontal joint because of localized stress concentration, but the wall panels behave elastically under cyclic loads. In order to describe the nonlinear behavior of the joint in the analysis of PC structures, different analysis technique from that of RC structures is needed. In this paper, for analysis of large concrete panel subassemblage subjected to cyclic loads, the wall panels are idealized by elastic finite elements, and the joints by nonlinear spring elements with various load-deflection relationship. The analytical results are compared with the experimental results on the strength, stiffness, energy dissipation and lateral drift, and the effectiveness of this computer analysis modelling technique is checked.

  • PDF

A Study on the Fatigue Life Evaluation of Spot Welded Joints under Tensile-Shear Loading (인장-전단 하중을 받는 점용접부의 피로 수명 평가에 관한 연구)

  • Chung, K.;Kim, H.
    • Journal of Power System Engineering
    • /
    • v.5 no.1
    • /
    • pp.80-88
    • /
    • 2001
  • The spot welding method has been used in the joining of structures, automotive body, railway carriage, aircraft, household electric appliances, precision parts etc., because of brief working, easy automation, available mass production, and convenience. In this paper, the effects of welding conditions on the fatigue life and the prediction of fatigue life based on fracture mechanics theory of spot welded joint were investigated. Fatigue tests were conducted with the tensile-shear specimens welded in the various current using cold rolled steel sheets. Fatigue life of spot welded joint was predicted and compared with experimental results. Using FEM(finite element method), we analysed the distribution of stress and the condition of deformation on the environments of nugget.

  • PDF

Seismic Performance of T-Shaped PC Walls with Wet Cast Joint (현장타설 습식접합부가 있는 T형 PC 벽체의 내진성능)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.255-266
    • /
    • 2014
  • This paper investigates the seismic performance of T-shaped PC walls with a new vertical connections and wet cast joint. The load-displacement relationship, strength, ductility, failure mechanism, and deformation capacity of the T-shaped PC walls subjected to cyclic loading are verified. Test parameter is diagonal reinforcement of both flange and web wall panels to transfer shear strength. The longitudinal reinforcing steel bars placed edges of walls yield first and the ultimate deformation is terminated due to premature failure of connections. And diagonal reinforcements for shear transfer in walls are effective to restrain the wall crack. The strength and displacement obtained by the cross section analysis were very similar to the experimental data.

Seismic behavior of non-seismically designed eccentric reinforced concrete beam-column joints

  • Liu, Ying;Wong, Simon H.F.;Zhang, Hexin;Kuang, J.S.;Lee, Pokman;Kwong, Winghei
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.613-625
    • /
    • 2021
  • Non-seismically designed eccentric reinforced concrete beam-column joints were extensively used in existing reinforced concrete frame buildings, which were found to be vulnerable to seismic action in many incidences. To provide a fundamental understanding of the seismic performance and failure mechanism of the joints, three 2/3-scale exterior beam-column joints with non-seismically designed details were cast and tested under reversed cyclic loads simulating earthquake excitation. In this investigation, particular emphasis was given on the effects of the eccentricity between the centerlines of the beam and the column. It is shown that the eccentricity had significant effects on the damage characteristics, shear strength, and displacement ductility of the specimens. In addition, shear deformation and the strain of joint hoops were found to concentrate on the eccentric face of the joint. The results demonstrated that the specimen with an eccentricity of 1/4 column width failed in a brittle manner with premature joint shear failure, while the other specimens with less or no eccentricity failed in a ductile manner with joint shear failure after beam flexural yielding. Test results are compared with those predicted by three seismic design codes and two non-seismic design codes. In general, the codes do not accurately predict the shear strength of the eccentric joints with non-seismic details.