• Title/Summary/Keyword: joint shear deformation

Search Result 123, Processing Time 0.02 seconds

Modeling of cyclic joint shear deformation contributions in RC beam-column connections to overall frame behavior

  • Shin, Myoungsu;LaFave, James M.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.645-669
    • /
    • 2004
  • In seismic analysis of moment-resisting frames, beam-column connections are often modeled with rigid joint zones. However, it has been demonstrated that, in ductile reinforced concrete (RC) moment-resisting frames designed based on current codes (to say nothing of older non-ductile frames), the joint zones are in fact not rigid, but rather undergo significant shear deformations that contribute greatly to global drift. Therefore, the "rigid joint" assumption may result in misinterpretation of the global performance characteristics of frames and could consequently lead to miscalculation of strength and ductility demands on constituent frame members. The primary objective of this paper is to propose a rational method for estimating the hysteretic joint shear behavior of RC connections and for incorporating this behavior into frame analysis. The authors tested four RC edge beam-column-slab connection subassemblies subjected to earthquake-type lateral loading; hysteretic joint shear behavior is investigated based on these tests and other laboratory tests reported in the literature. An analytical scheme employing the modified compression field theory (MCFT) is developed to approximate joint shear stress vs. joint shear strain response. A connection model capable of explicitly considering hysteretic joint shear behavior is then formulated for nonlinear structural analysis. In the model, a joint is represented by rigid elements located along the joint edges and nonlinear rotational springs embedded in one of the four hinges linking adjacent rigid elements. The connection model is able to well represent the experimental hysteretic joint shear behavior and overall load-displacement response of connection subassemblies.

Seismic Response of Exterior RC Column-to-Steel Beam Connections (II. Strength and Deformation) (콘크리트 기둥-강재 보 외부 접합부의 내진성능(II 강도 및 변형))

  • 조순호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.283-289
    • /
    • 2000
  • The panel shear and bearing strengths determining the seismic resistance of reinforced concrete column-to-steel beam connections are predicted by various methods for four previously tested exterior beam-column joints. The analytical approach to model the joint deformation is also examined. Several analyses incorporating the deformations of panel shear and bearing in the joint are demonstrated using a analyses incorporating the deformations of panel shear and bearing in the joint are demonstrated using a fairly simple connection model in the commercial packages such as Drain2dx and IDARC. The strength prediction results indicated that the ASCE method with the modifcation of the comprssion strut contribution is th most accurate. It is also considered that the analytical model presented including the joint deformation can be used for the overall analysis

  • PDF

Free vibration analysis of a Timoshenko beam carrying multiple spring-mass systems with the effects of shear deformation and rotary inertia

  • Wang, Jee-Ray;Liu, Tsung-Lung;Chen, Der-Wei
    • Structural Engineering and Mechanics
    • /
    • v.26 no.1
    • /
    • pp.1-14
    • /
    • 2007
  • Because of complexity, the literature regarding the free vibration analysis of a Timoshenko beam carrying "multiple" spring-mass systems is rare, particular that regarding the "exact" solutions. As to the "exact" solutions by further considering the joint terms of shear deformation and rotary inertia in the differential equation of motion of a Timoshenko beam carrying multiple concentrated attachments, the information concerned is not found yet. This is the reason why this paper aims at studying the natural frequencies and mode shapes of a uniform Timoshenko beam carrying multiple intermediate spring-mass systems using an exact as well as a numerical assembly method. Since the shear deformation and rotary inertia terms are dependent on the slenderness ratio of the beam, the shear coefficient of the cross-section, the total number of attachments and the support conditions of the beam, the individual and/or combined effects of these factors on the result are investigated in details. Numerical results reveal that the effect of the shear deformation and rotary inertia joint terms on the lowest five natural frequencies of the combined vibrating system is somehow complicated.

Large deformation modeling of flexible manipulators to determine allowable load

  • Esfandiar, Habib;Korayem, Moharam H.;Haghpanahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.619-629
    • /
    • 2017
  • This paper focuses on the study of complete dynamic modeling and maximum dynamic load carrying capacity computation of N-flexible links and N-flexible joints mobile manipulator undergoing large deformation. Nonlinear dynamic analysis relies on the Timoshenko theory of beams. In order to model the system completely and precisely, structural and joint flexibility, nonlinear strain-displacement relationship, payload, and non-holonomic constraints will be considered to. A finite element solution method based on mixed method is applied to model the shear deformation. This procedure is considerably more involved than displacement based element and shear deformation can be readily included without inducing the shear locking in the element. Another goal of this paper is to present a computational procedure for determination of the maximum dynamic load of geometrically nonlinear manipulators with structural and joint flexibility. An effective measure named as Moment-Height Stability (MHS) measure is applied to consider the dynamic stability of a wheeled mobile manipulator. Simulations are performed for mobile base manipulator with two flexible links and joints. The results represent that dynamic stability constraint is sensitive when calculating the maximum carrying load. Furthermore, by changing the trajectory of end effector, allowable load also changes. The effect of torsional spring parameter on the joint deformation is investigated in a parametric sensitivity study. The findings show that, by the increase of torsional stiffness, the behavior of system approaches to a system with rigid joints and allowable load of robot is also enhanced. A comparison is also made between the results obtained from small and large deformation models. Fluctuation range in obtained figures for angular displacement of links and end effector path is bigger for large deformation model. Experimental results are also provided to validate the theoretical model and these have good agreement with the simulated results.

Comparative experimental study on seismic retrofitting methods for full-scale interior reinforced concrete frame joints

  • Yang Chen;Xiaofang Song;Yingjun Gan;Chong Ren
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.385-397
    • /
    • 2023
  • This study presents an experiment and analysis to compare the seismic behavior of full-scale reinforced concrete beam-column joint strengthened by prestressed steel strips, externally bonded steel plate, and CFRP sheets. For experimental investigation, five specimens, including one joint without any retrofitting, one joint retrofitted by externally bonded steel plate, one joint retrofitted by CFRP sheets, and two joints retrofitted by prestressed steel strips, were tested under cyclic-reserve loading. The failure mode, strain response, shear deformation, hysteresis behavior, energy dissipation capacity, stiffness degradation and damage indexes of all specimens were analyzed according to experimental study. It was found that prestressed steel strips, steel plate and CFRP sheets improved shear resistance, energy dissipation capacity, stiffness degradation behavior and reduced the shear deformation of the joint core area, as well as changed the failure pattern of the specimen, which led to the failure mode changed from the combination of flexural failure of beams and shear failure of joints core to the flexural failure of beams. In addition, the beam-column joint retrofitted by steel plate exhibited a high bearing capacity, energy consumption capacity and low damage index compared with the joint strengthened by prestressed steel strip, and the prestressed steel strips reinforced joint showed a high strength, energy dissipation capacity and low shear deformation, stirrups strains and damage index compared to the CFRP reinforced joint, which indicated that the frame joints strengthened with steel plate exhibited the most excellent seismic behavior, followed by the prestressed steel strips.

A Study on Distinct Element Modelling of Dilatant Rock Joints (팽창성 암석절리의 개별요소 모델링에 관한 연구)

  • 장석부;문현구
    • Tunnel and Underground Space
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • The behavior of a jointed rock mass depends mainly on the geometrical and mechanical properties of joints. The failure mode of a rock mass and kinematics of rock blocks are governed by the orientation, spacing, and persistence of joints. The mechanical properties such as dilation angle, shear strength, maximum closure, strength of asperities and friction coeffiient play important roles on the stability and deformation of the rock mass. The normal and shear behaviour of a joint are coupled due to dilation, and the joint deformation depends also on the boundary conditions such as stiffness conditons. In this paper, the joint constitutive law including the dilatant behaviour of a joint is numerically modelled using the edge-to-edge contact logic in distinct element method. Also, presented is the method to quantify the input parameters used in the joint law. The results from uniaxial compression and direct shear tests using the numeical model of the single joint were compared to the analytic results from them. The boundary effect on the behaviour of a joint is verified by comparing the results of direct shear test under constant stress boundary condition with those under constant stiffness boundary condition. The numerical model developed is applied to a complex jointed rock mass to examine its performance and to evaluate the effect of joint dilation on tunnel stability.

  • PDF

Seismic behavior of reinforced concrete interior beam-column joints with beams of different depths

  • Xing, G.H.;Wu, T.;Niu, D.T.;Liu, X.
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.429-449
    • /
    • 2013
  • Current Design Codes for Reinforced Concrete (RC) interior beam-column joints are based on limited experimental studies on the seismic behavior of eccentric joints. To supplement existing information, an experimental study was conducted that focused on the effect of eccentricity of the deeper beams with respect to the shallow beams. A total of eight one-third scale interior joints with beams of different depths were subjected to reverse cyclic loading. The primary variables in the test specimens were the amount of joint transverse reinforcement and the cross section of the shallow beams. The overall performance of each test assembly was found to be unsatisfactory in terms of joint shear strength, stiffness, energy dissipation and shear deformation. The results indicated that the vertical eccentricity of spandrel beams in this type of joint led to lower capacity in joint shear strength and severe damage of concrete in the joint core. Increasing the joint shear reinforcement was not effective to alter the failure mode from joint shear failure to beam yielding which is favorable for earthquake resistance design, whereas it was effective to reduce the crack width at the small loading stages. Based on the observed behavior, the shear stress of the joint core was suggested to be kept as low as possible for a safe and practical design of this type of joint.

The Effect of Cement Milk Grouting on the Deformation Behavior of Artifcial Rock Joints (시멘트현탁액 주입에 의한 신선한 암석절리의 역학적 특성 변화)

  • 김태혁;이정인
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.180-195
    • /
    • 2000
  • Grouting has been practiced as a reliable technique to improve the mechanical properties of rock mass. But, the study of ground improvement by greeting is rare especially in jointed rock mass. In this study, joint compression test and direct shear test were performed on pure rock joint and cement milk grouted rock joint to examine the grouting effect on the property of rock joint. In the pure rock joint compression test, joint closure varied non-linearly with normal stress. But after cement milk grouting, the normal deformation characteristics of the joint was linear at the low normal stress level. As normal stress increased. deformation of the sample rapidly increased due to the stress concentration at the joint asperities. Peak shear strength of the grouted joint in low normal stress was higher than that of non-grouted joint due to the cohesion, decreased exponetially as the grout thickness increased. Thus after cement milk grouting, the failure envelope modified to a curve that has cohesion due to grout material hydration with decreased friction angle. Shear stiffness and peak dilation angle of the grouted joint decreased as the grout thickness increased. The peak shear strength from the direct shear test on grouted rock joint was represented by an empirical equation as a fuction of grout thickness and roughness mean amplitude.

  • PDF

Destructive testing of adhesively bonded joints under static tensile loading

  • Ochsner, A.;Gegner, J.
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.22-36
    • /
    • 2004
  • Several in-situ testing methods of adhesively bonded joints under static short-time tensile loading are critically analyzed in terms of experimental procedure and data evaluation. Due to its rather homogeneous stress state across the glue line, the tensile-shear test with thick single-lap specimens, according to ISO 11003-2, has become the most important test process for the determination of realistic materials parameters. This basic method, which was improved in both, the experimental part by stepped adherends and easily attachable extensometers and the evaluation procedure by numeric substrate deformation correction and test simulation based on the finite element method (FEM), is therefore demonstrated by application to several kinds of adhesives and metallic adherends. Multi-axial load decreases the strength of a joint. This effect, which is illustrated by an experimental comparison, impedes the derivation of realistic mechanical characteristics from measured force-displacement curves. It is shown by numeric modeling that tensile-shear tests with thin plate substrates according to ISO 4587, which are widely used for quick industrial quality assurance, reveal an inhomogeneous stress state, especially because of relatively large adherend deformation. Complete experimental determination of the elastic properties of bonded joints requires independent measurement of at least two characteristics. As the thick-adherend tensile-shear test directly yields the shear modulus, the tensile butt-joint test according to ISO 6922 represents the most obvious complement of the test programme. Thus, validity of analytical correction formulae proposed in literature for the derivation of realistic materials characteristics is verified by numeric simulation. Moreover, the influence of the substrate deformation is examined and a FEM correction method introduced.

  • PDF

Cyclic behavior of interior beam-column connections in non-seismic RC frames at different loading rates

  • Dhakal, Rajesh P.;Pan, Tso-Chien
    • Structural Engineering and Mechanics
    • /
    • v.23 no.2
    • /
    • pp.129-145
    • /
    • 2006
  • This paper provides an insight into the response of non-seismic reinforced concrete (RC) building frames to excitations of different frequencies through experimental investigation. The results of cyclic loading tests of six full-scale RC beam-column sub-assemblies are presented. The tested specimens did not have any transverse reinforcement inside the joint core, and they were subjected to quasi-static and dynamic loading with frequencies as high as 20 Hz. Some important differences between the cyclic responses of non-seismic and ductile RC frames are highlighted. The effect of excitation frequency on the behavior of non-seismic joints is also discussed. In the quasi-static tests, shear deformation of the joint panel accounted for more than 50% of the applied story drift. The test results also showed that higher-frequency excitations are less detrimental than quasi-static cyclic loads, and non-seismic frames can withstand a higher load and a larger deformation when they are applied faster.