• Title/Summary/Keyword: joint length

Search Result 1,025, Processing Time 0.024 seconds

An Estimation of Comfort on the Automobile Driver Seat Korean Anthropometric Experiment (한국인 인체측정 실험에 의한 자동차 운전석의 안락감 평가)

  • 이영신;이석기;박세진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.61-72
    • /
    • 1996
  • In this paper, the driver seat comfort of eight automobiles was studied. The joint angles and anthropometric data of eleven subjects sitting on the seating buck were investigated using the instrument devices such as scale, goniometer, vernier calipers, protractor, Martin set. The joint angles of the most comfort posture were found by experiment and compared with previous studies. The anthropometric data of Korean(1992 year surveys) and American(1970∼1974 year) were applied to evaluate the driver seat layout of Korean automobile. The joint angles of the most comfort posture for eleven subjects were obtained with experimental results. The joint angles were agreed with reference angles. The driver seat layout was not suited to seat length and acceleratorseatpan forward distance in 5 percentiles female, pedal separation and seatpan-roof height in 95 percentiles male. Korean automobiles were not suited to seatpan length and steering wheelseatpan clearance, floor-roof height for American 95 percentiles male. The driver anthropometric dimensions were more suitable to middle size than small size automobiles.

  • PDF

Effect of foam roller, kinesiotaping and dynamic stretching on gait parameters with induced ankle muscle fatigue

  • Suh, Hye Rim;Lee, Su-Young
    • Physical Therapy Rehabilitation Science
    • /
    • v.7 no.3
    • /
    • pp.127-133
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the effects of foam roller (FR) stretching, kinesiotaping (KT), and dynamic stretching (DS) on gait parameters after inducing muscle fatigue in the ankle joint. Design: Cross-sectional study. Methods: The subjects were thirty healthy young adults between the ages of 20 and 31 years at Baekseok University who voluntarily participated in this study. The participants were randomly assigned to either the FR group, KT group, or the DS group after inducing muscle fatigue of the ankle joint. Fatigue induction of the ankle joint muscles was performed by alternating a heel up and down exercise with the standing posture on the ground. The speed was maintained at 40 beats/minute using a metronome. Subsequently, the respective intervention was applied to each group. Gait parameters were measured before and after ankle muscle fatigue induction, and after intervention using the GAITRite system. One-way ANOVA was used to compare gait parameters among groups, while repeated measures ANOVA was used to compare gait parameters within each intervention group. Results: The FR group increased significantly in velocity, step length, and stride length except for cadence after intervention compared to after ankle muscle fatigue induction (p<0.01). Furthermore, the KT group showed significant increases in velocity, cadence, step length, and stride length after intervention, especially in cadence group (p<0.05). All intervention groups showed significant increases in stride length after intervention, especially the DS group (p<0.05). Conclusions: Therefore, we suggest that KT, FR, and DS can be an effective intervention on gait parameters when the ankle joint is unstable and injured.

Differences in mandibular condyle and glenoid fossa morphology in relation to vertical and sagittal skeletal patterns: A cone-beam computed tomography study

  • Noh, Kyoung Jin;Baik, Hyoung-Seon;Han, Sang-Sun;Jang, Woowon;Choi, Yoon Jeong
    • The korean journal of orthodontics
    • /
    • v.51 no.2
    • /
    • pp.126-134
    • /
    • 2021
  • Objective: This study aimed to evaluate the following null hypothesis: there are no differences in the morphology of the temporomandibular joint (TMJ) structures in relation to vertical and sagittal cephalometric patterns. Methods: This retrospective study was performed with 131 participants showing no TMJ symptoms. The participants were divided into Class I, II, and III groups on the basis of their sagittal cephalometric relationships and into hyperdivergent, normodivergent, and hypodivergent groups on the basis of their vertical cephalometric relationships. The following measurements were performed using cone-beam computed tomography images and compared among the groups: condylar volume, condylar size (width, length, and height), fossa size (length and height), and condyle-to-fossa joint spaces at the anterior, superior, and posterior condylar poles. Results: The null hypothesis was rejected. The Class III group showed larger values for condylar width, condylar height, and fossa height than the Class II group (p < 0.05). Condylar volume and superior joint space in the hyperdivergent group were significantly smaller than those in the other two vertical groups (p < 0.001), whereas fossa length and height were significantly larger in the hyperdivergent group than in the other groups (p < 0.01). The hypodivergent group showed a greater condylar width than the hyperdivergent group (p < 0.01). The sagittal and vertical cephalometric patterns showed statistically significant interactions for fossa length and height. Conclusions: TMJ morphology differed across diverse skeletal cephalometric patterns. The fossa length and height were affected by the interactions of the vertical and sagittal skeletal patterns.

The effects of the different steps on the forces and moments of the lower extremity's joint in the three dimension during a steady running (달리기 시 일정한 속도에서 보폭 차이가 하지 관절의 3차원 힘과 모멘트에 미치는 영향)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.47-61
    • /
    • 2002
  • The purpose of this study was to determined the force and moment of the ankle and the knee joint at different step length relative to the length of the lower extremity during a steady running. Six digital cameras(Qualisis) and a forceplatform(A.M.T.I) were used to obtain the kinematic data of the segments and kinetic data on the running at speed of 5.18m/s. The force and moment measured from six subjects participated in this study were limited to the support phase and their values were averaged at the moment of heel strike, mid stance, and toe off of a running for making a comparison between the condition 1(relative step length 1.1) and the condition 2(relative step length 1.4). It was concluded that internal forces except mediolateral force of the condition 2 were greater in the ankle and the knee joint than those of the condition 1, but all moments of condition 2 were greater from the descriptive statistic point of view. For the future study, it was needed to consider a number of subjects, a various running speed, and a individual step preference for applying generally results to the running strategy.

Refined 3-D Stress Analysis of Composite Wavy-Lap Joint (복합재료 Wavy-Lap Joint의 3-D 상세 응력 해석)

  • Shin, Hun;Lee, Chang-Sung;Kim, Seung-Jo;Kim, Wi-Dae
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.168-171
    • /
    • 2001
  • Due to intrinsic load eccentricity, severe peel stress concentration occurs at both ends of the single-lap joint. To avoid load eccentricity as well as the singular tensile peel stress in the joint interface, composite wavy-lap joint is proposed. In this paper, refined 3-D stress analysis of wavy-lap joint is performed by finite element method using parallel mutifrontal solver. Analysis results show that the singular tensile peel stress concentration is totally avoided in wavy-lap joint, and that loads are more evenly transferred over the length of the joint. Therefore, the strength of wavy-lap joint is significantly higher than that of conventional single-lap joint. And it is believed that even higher strengths can be obtained by optimizing the new design configuration.

  • PDF

Strength Experimental Study on Precast Column-R.C. Foundation Anchor Joint Subjected to Cyclic Horizontal Loading (반복-수평력을 받는 프리캐스트기둥- RC기초 Anchor 접합부의 내력 실험 연구)

  • Lee, Ho;Jung, Hwoan-Mok;Cha, Byung-Gi;Byun, Sang-Min
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.2
    • /
    • pp.45-52
    • /
    • 2009
  • This paper experimentally evaluates the strength characteristics of precast column-R.C. foundation anchor joint subjected to the cyclic horizontal load. The study presents differences in accurate stress transfer path and destruction mechanism between the concrete structural body applying the precast column-R.C. foundation anchor joint and the concrete structural body applying the steel joint. the result from width load experiment on reinforcing steel under the cyclic horizontal load provides the necessary minimum insertion length to construct the precast column-R.C. foundation anchor joint. This study also presents the accurate stress transfer path and destruction mechanism on the anchor joint th meet the customer's requirements, comparing stress transfer path and destruction mechanism provided by the experiment and those provided by the product manual. Eventually, this study presents all the necessary fundamental data to provide the construction design with accurate number of reinforcing steel, diameter of the steel, fixation length of the steel, etc. to build the optimum precast concrete column.

  • PDF

The Study on the Lower Limb Surface Changes Caused by the Limb Movements (Part 1) (동작에 따른 하지피부면의 변화에 관한 연구 (제일보) - 탈관절과 슬관절 굴신을 중심으로 -)

  • 박영득
    • Journal of the Korean Home Economics Association
    • /
    • v.20 no.4
    • /
    • pp.1-12
    • /
    • 1982
  • This study was to investigate the changes of shape of the lower limb surface, the rate of the measurement of expansion and contraction and correlation coefficient between variables caused by hip joint and knee joint movements. The results of the investigation are as follows; 1. According to the development figure of shell when the leg was raised $45^{\circ}$forward($M_{2}$), total length of F.L shortened while B.L lengthened. This result is contarary to $M_{3}$raising the leg $15^{\circ}$ backward. In both $M_{2}$, $M_{3}$movements, the rate of expansion and contraction to the course direction was insignificant. When hip joint was bent $15^{\circ}$ with knee joint $120^{\circ}$bent ($M_{4}$) and hip joint was bent $30^{\circ}$ with knee joint $90^{\circ}$ bent($M_{5}$), upper section of back hip expanded while the front hip section contracted slightly. In the Movement of sitting on the chair($M_{6}$), abdomen, front hip section and upper thight section contracted to the wale direction remarkably while the back hip section expanded conspicuously. 2. According to the rate of expansion and contraction of skin (surface) by the somatometry. In $M_{2}$, C.F.L. upper and middle thight girth contracted and B.L, C.L, L.L expanded. This fact is contarary to M3. In M4, M5, C.F.L showed remarkable contraction and C.B.L expanded remarkably. In $M_{6}$, C.B.L contracted most of all the items measured and knee girth, F.L, L.L, C.B.L, hip girth expanded conspicuously. 3. According to the correlation coefficient between variables. In various movements, the correlation among girth items commonly showed a high or middle grade, the correlation among length items also commonly showed a low grade and that girth and length items showed a very low grade commonly. Waist girth, hip grith, F.L, B.L, L.L items showed that there were significant correlation.

  • PDF

Interaction between opening space in concrete slab and non-persistent joint under uniaxial compression using experimental test and numerical simulation

  • Vahab Sarfarazi;Kaveh Asgari;Mehdi Kargozari;Pouyan Ebneabbasi
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.207-221
    • /
    • 2023
  • In this investigation, the interaction between opening space and neighboring joint has been examined by experimental test and Particle flow code in two dimension (PFC2D) simulation. Since, firs of all PFC was calibrated using Brazilian experimental test and uniaxial compression test. Secondly, diverse configurations of opening and neighboring joint were provided and tested by uniaxial test. 12 rectangular sample with dimension of 10 cm*10 cm was prepared from gypsum mixture. One quarter of tunnel and one and or two joint were drilled into the sample. Tunnel diameter was 5.5 cm. The angularities of joint in physical test were 0°, 45° and 90°. The angularities of joint in numerical simulation were 0°, 30°, 60°, -30°, -45°, -60° and its length were 2cm and 4cm. Loading rate was 0.016 m/s. Tensile strength of material was 4.5 MPa. Results shows that dominant type of crack which took place in the model was tensile cracks and or several shear bands develop within the model. The Final stress is minimum in the cases where oriented angle is negative. The failure stress decrease by decreasing the joint angle from 30° to 60°. In addition, the failure stress decrease by incrementing the joint angle from -30° to -60°. The failure stress was incremented by decreasing the number of notches. The failure stress was incremented by decreasing the joint length. The failure stress was incremented by decreasing the number of notches. Comparing experimental results and numerical one, showed that the failure stress is approximately identical in both conditions.

Behavior of F shape non-persistent joint under experimental and numerical uniaxial compression test

  • Sarfarazi, Vahab;Asgari, Kaveh;Zarei, Meisam;Ghalam, Erfan Zarrin
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.199-213
    • /
    • 2022
  • Experimental and discrete element approaches were used to examine the effects of F shape non-persistent joints on the failure behaviour of concrete under uniaxial compressive test. concrete specimens with dimensions of 200 cm×200 cm×50 cm were provided. Within the specimen, F shape non-persistent joint consisting three joints were provided. The large joint length was 6 cm, and the length of two small joints were 2 cm. Vertical distance between two small joints change from 1.5 cm to 4.5 cm with increment of 1.5 cm. In constant joint lengths, the angle of large joint change from 0° to 90° with increments of 30°. Totally 12 different models were tested under compression test. The axial load rate on the model was 0.05 mm/min. Concurrent with experimental tests, numerical simulation (Particle flow code in two dimension) were performed on the models containing F shape non-persistent joint. Distance between small joints and joint angles were similar to experimental one. the results indicated that the failure process was mostly governed by both of the Distance between small joints and joint angles. The axial loading rate on the model was 0.05 mm/min. The compressive strengths of the samples were related to the fracture pattern and failure mechanism of the discontinuities. Furthermore, it was shown that the compressive behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the joint angle. In the first, there were only a few acoustic emission (AE) hits in the initial stage of loading, and then AE hits rapidly grow before the applied stress reached its peak. Furthermore, a large number of AE hits accompanied every stress drop. Finally, the failure pattern and failure strength are similar in both approaches i.e., the experimental testing and the numerical simulation approaches.

Characteristics of Adhesive bonded Joints of Steels for Automobile(I) (자동차용 강판의 접착특성 - 접착부위 접합 강도와 영향인자 -)

  • 윤병현;권영각
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.106-114
    • /
    • 1995
  • The characteristics of adhesive bonded joint of steels for automobile were investigated. Shear and tear strength were tested and analyzed for the joints of cold rolled steel sheets bonded with three kinds of epoxy and urethane based adhesive. The results showed that the tensile shear strength and the tear strength of adhesive joint were affected by the shape of adhesive joint such as the length and width of adhesive joint. The thickness of adhesive layer was very important factor affecting the bonding strength. The shear strength increased with decrease of the thickness of adhesive layer, while the tear strength decreased as the thickness of adhesive layer decreased. In comparison with the strength of spot welded joint, the shear strength of adhesive Joint was higher than that of spot welded joint, but the tear strength of adhesive Joint was lower than that of spot welded joint.

  • PDF