• Title/Summary/Keyword: joint effect

Search Result 2,984, Processing Time 0.025 seconds

A study on the correlations of between the ritual feature and the narrative (<짐가제굿>에 나타난 살(煞) 막음의 의미와 제의적 성격)

  • Lee, Kyung-Hwa
    • (The) Research of the performance art and culture
    • /
    • no.38
    • /
    • pp.225-248
    • /
    • 2019
  • is a ritual song which is song in Mangmuk-gut of Hamgyeongdo. is known as it block sal(煞). The study on was done in comparison with . So it is necessary to discuss centering on , and to understand its ritual role with narrative. In this article, I have paid attention to the space of . The space is consisted of inside and outside the village. In the process of solving grudge of the deaths, I confirmed that the problem of the individual extends to the problem of the village. Although the problem is solved through the joint response of the villages, in the process the effect of the problem such as losing and sacrifice the members is in the whole village. So blocking Sal of the village is done for the complete solution. Furthermore, song in individual ritual, but it can be said that the function of the is extended to the role of the Maeul(village)-gut.

A self-confined compression model of point load test and corresponding numerical and experimental validation

  • Qingwen Shi;Zhenhua Ouyang;Brijes Mishra;Yun Zhao
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.465-474
    • /
    • 2023
  • The point load test (PLT) is a widely-used alternative method in the field to determine the uniaxial compressive strength due to its simple testing machine and procedure. The point load test index can estimate the uniaxial compressive strength through conversion factors based on the rock types. However, the mechanism correlating these two parameters and the influence of the mechanical properties on PLT results are still not well understood. This study proposed a theoretical model to understand the mechanism of PLT serving as an alternative to the UCS test based on laboratory observation and literature survey. This model found that the point load test is a self-confined compression test. There is a compressive ellipsoid near the loading axis, whose dilation forms a tensile ring that provides confinement on this ellipsoid. The peak load of a point load test is linearly positive correlated to the tensile strength and negatively correlated to the Poisson ratio. The model was then verified using numerical and experimental approaches. In numerical verification, the PLT discs were simulated using flat-joint BPM of PFC3D to model the force distribution, crack propagation and BPM properties' effect with calibrated micro-parameters from laboratory UCS test and point load test of Berea sandstones. It further verified the mechanism experimentally by conducting a uniaxial compressive test, Brazilian test, and point load test on four different rocks. The findings from this study can explain the mechanism and improve the understanding of point load in determining uniaxial compressive strength.

The Effect of Squat Exercise Using a Reformer on Muscle Strength, Range of Motion, and Gait in Patients who Underwent Total Hip Replacement Surgery : A Pilot Study

  • Se-Ju Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.183-189
    • /
    • 2023
  • The propose of this study was to investigate the effects of squat exercise using a reformer on muscle strength, range of motion, and gait in hip joint replacement patients. This study was conducted on 20 patients hospitalized at a rehabilitation hospital in G City. As an intervention method, the experimental group performed squat exercises using a reformer, and the control group performed squat exercises, 7 times a week for 2 weeks. In the within-group comparison of the reformer group, there was a significant difference in hip flexion, extension, and abduction strength (p<0.05). There were significant differences within the group in the range of motion of hip extension and abduction and gait in the Reformer group (p<0.05). In comparison between groups, significant differences occurred in hip extension strength, hip extension, abduction range of motion, and gait (p<0.05).

Immediate Effects of Appling Resistance in the Bridge Exercise on Muscle Activity in the Trunk and Lower Extremities

  • Sun Min Kim;Gku Bin Oh;Gang Mi Youn;Ji Hyun Kim;Ki Hun Cho
    • Journal of Korean Physical Therapy Science
    • /
    • v.30 no.3
    • /
    • pp.1-13
    • /
    • 2023
  • Background: The bridge exercise prevents repeated damage to the tissues around the spine by reducing stimulus transmission to the ligaments and joint capsules, thereby alleviating back pain. It also contributes to strengthening the muscles of the lower extremities. Design: A Single Subject experience design. Methods: This study was conducted on 28 healthy adults in their 20s to 30s and conducted at St. Mary's Hospital in C City from May to July 2021. Four types of bridge exercise were performed in this study: the normal bridge exercise and bridge exercises with 0.5%, 1%, or 1.5% body weight resistance applied on the pelvis through manual resistance during the bridge exercise and to determine the effect of resistance applied in the bridge exercise on the activation of the trunk and lower extremities muscles. Results:This study showed that the muscle activity of the trunk and lower extremities improved significantly in response to stronger resistance when manual resistance equivalent to 0.5%, 1%, or 1.5% of body weight was applied during the bridge exercise compared to when the normal bridge exercise was performed. Conclusion: This study shows that manual resistance can be applied as an effective method of bridge exercise since muscle activity in the trunk and lower extremities increases when manual resistance causing isometric contraction is applied.

Effect of Planting Patterns on the Cultivation of Eggplant (Solanum melongena) and Marigold (Tagetes erecta) for the Activation of Eco-Friendly Rooftop Urban Agriculture (친환경 옥상 도시농업 활성화를 위한 배식모형에 따른 가지(Solanum melongena)와 메리골드(Tagetes erecta) 식재효과)

  • Jae-Hyun Park;Sang-Il Seo;Deuk-Kyun Oh;Yong-Han Yoon;Jin-Hee Ju
    • Journal of Environmental Science International
    • /
    • v.33 no.6
    • /
    • pp.417-425
    • /
    • 2024
  • This study investigated the effects of various planting models on the joint cultivation of eggplant (Solanum melongena) and marigold (Tagetes erecta)to enhance sustainable rooftop urban farming. Rooftop agriculture is increasingly valued to boost the food supply and benefit the environment. Integrating such practices into urban planning is viewed as a way to sustainably manage resources and improve the food-energy-water cycle in cities. The experiment was conducted on a rooftop in Chungju, South Korea from May to August. Four different planting setups were used: central eggplant with peripheral marigold (SET), eggplant with a protective net (SIC), central marigold with peripheral eggplant (TES), and control with only eggplant (CON S). These models tested the effects of companion planting versus monoculture using a lightweight soil mix ideal for rooftops made from cocopeat and perlite and enriched with organic fertilizer. Measurements focused on soil conditions and plant health and assessed soil temperature, moisture, conductivity, plant height, width, and leaf size. The results indicated that the SET modelyielded the best growth. This setup benefited from marigold pest control properties and its ability to improve soil conditions by enhancing moisture and nutrient levels and aiding eggplant growth. These findings underscore the potential of mixed planting on rooftops and suggest that such approaches can be effectively incorporated into urban agriculture to boost yield and environmental sustainability. This study supports the idea that diverse planting methods can significantly affect plant growth and promote urban greening and food security.

Analysis and study of Deep Reinforcement Learning based Resource Allocation for Renewable Powered 5G Ultra-Dense Networks

  • Hamza Ali Alshawabkeh
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.226-234
    • /
    • 2024
  • The frequent handover problem and playing ping-pong effects in 5G (5th Generation) ultra-dense networking cannot be effectively resolved by the conventional handover decision methods, which rely on the handover thresholds and measurement reports. For instance, millimetre-wave LANs, broadband remote association techniques, and 5G/6G organizations are instances of group of people yet to come frameworks that request greater security, lower idleness, and dependable principles and correspondence limit. One of the critical parts of 5G and 6G innovation is believed to be successful blockage the board. With further developed help quality, it empowers administrator to run many systems administration recreations on a solitary association. To guarantee load adjusting, forestall network cut disappointment, and give substitute cuts in case of blockage or cut frustration, a modern pursuing choices framework to deal with showing up network information is require. Our goal is to balance the strain on BSs while optimizing the value of the information that is transferred from satellites to BSs. Nevertheless, due to their irregular flight characteristic, some satellites frequently cannot establish a connection with Base Stations (BSs), which further complicates the joint satellite-BS connection and channel allocation. SF redistribution techniques based on Deep Reinforcement Learning (DRL) have been devised, taking into account the randomness of the data received by the terminal. In order to predict the best capacity improvements in the wireless instruments of 5G and 6G IoT networks, a hybrid algorithm for deep learning is being used in this study. To control the level of congestion within a 5G/6G network, the suggested approach is put into effect to a training set. With 0.933 accuracy and 0.067 miss rate, the suggested method produced encouraging results.

Presenting an advanced component-based method to investigate flexural behavior and optimize the end-plate connection cost

  • Ali Sadeghi;Mohammad Reza Sohrabi;Seyed Morteza Kazemi
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.31-43
    • /
    • 2024
  • A very widely used analytical method (mathematical model), mentioned in Eurocode 3, to examine the connections' bending behavior is the component-based method that has certain weak points shown in the plastic behavior part of the moment-rotation curves. In the component method available in Eurocode 3, for simplicity, the effect of strain hardening is omitted, and the bending behavior of the connection is modeled with the help of a two-line diagram. To make the component method more efficient and reliable, this research proposed its advanced version, wherein the plastic part of the diagram was developed beyond the guidelines of the mentioned Regulation, implemented to connect the end plate, and verified with the moment-rotation curves found from the laboratory model and the finite element method in ABAQUS. The findings indicated that the advanced component method (the method developed in this research) could predict the plastic part of the moment-rotation curve as well as the conventional component-based method in Eurocode 3. The comparison between the laboratory model and the outputs of the conventional and advanced component methods, as well as the outputs of the finite elements approach using ABAQUS, revealed a different percentage in the ultimate moment for bolt-extended end-plate connections. Specifically, the difference percentages were -31.56%, 2.46%, and 9.84%, respectively. Another aim of this research was to determine the optimal dimensions of the end plate joint to reduce costs without letting the mechanical constraints related to the bending moment and the resulting initial stiffness, are not compromised as well as the safety and integrity of the connection. In this research, the thickness and dimensions of the end plate and the location and diameter of the bolts were the design variables, which were optimized using Particle Swarm Optimization (PSO), Snake Optimization (SO), and Teaching Learning-Based Optimization (TLBO) to minimization the connection cost of the end plate connection. According to the results, the TLBO method yielded better solutions than others, reducing the connection costs from 43.97 to 17.45€ (60.3%), which shows the method's proper efficiency.

Bending Performance Evaluation of Concrete Filled Tubular Structures With Various Diameter-thickness Ratios and Concrete Strengths (콘크리트 충전강관 구조의 직경-두께비 및 콘크리트 강도 변화에 따른 휨 성능 평가)

  • Lee, Sang-Youl;Park, Dae-Yong;Lee, Sang-Bum;Lee, Rae-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.223-230
    • /
    • 2009
  • In this study we deal with bending behaviors of a concrete filled tubular(CFT) with various diameter-thickness ratios and concrete strengths. In finite element analysis using a commercial package(LUSAS), the bonding effect between concrete and steel in CFT structures is modeled by applying a joint element for the bonding surface. In order to consider the nonlinearity of concrete and steel tubes, stress-strain curves of the concrete and steel are used for the increased stresses in a plastic domain. The numerical results obtained from the proposed method show good agreement with the experimental data from load-displacement curves of a steel tube under distributed loads. Several parametric studies are focused on structural characteristics of CFT under bending effects for different diameter-thickness ratios and concrete strengths.

Seismic response study of tower-line system considering bolt slippage under foundation displacement

  • Jia-Xiang Li;Jin-Peng Cheng;Zhuo-Qun Zhang;Chao Zhang
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.135-143
    • /
    • 2024
  • Once the foundation displacement of the transmission tower occurs, additional stress will be generated on the tower members, which will affect the seismic response of transmission tower-line systems (TTLSs). Furthermore, existing research has shown that the reciprocating slippage of joints needs to be considered in the seismic analysis. The hysteretic behavior of joints is obtained by model tests or numerical simulations, which leads to the low modeling efficiency of TTLSs. Therefore, this paper first utilized numerical simulation and model tests to construct a BP neural network for predicting the skeleton curve of joints, and then a numerical model for a TTLS considering the bolt slippage was established. Then, the seismic response of the TTLS under foundation displacement was studied, and the member stress changes and the failed member distribution of the tower were analyzed. The influence of foundation displacement on the seismic performance were discussed. The results showed that the trained BP neural network could accurately predict the hysteresis performance of joints. The slippage could offset part of the additional stress caused by foundation settlement and reduce the stress of some members when the TTLS with foundation settlement was under earthquakes. The failure members were mainly distributed at the diagonal members of the tower leg adjacent to the foundation settlement and that of the tower body. To accurately analyze the seismic performance of TTLSs, the influence of foundation displacement and the joint effect should be considered, and the BP neural network can be used to improve modeling efficiency.

Biomechanical Differences of Cycle Pedaling according to Uphill Slope (사이클 페달링 시 오르막 경사도에 따른 운동역학적 차이 분석)

  • Do-Hyung Kim;Suk-Hoon Yoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.3
    • /
    • pp.105-114
    • /
    • 2024
  • Objective: The purpose of this study is to provide quantitative data through biomechanics analysis of lower extremity movements according to uphill slope when pedaling a cycle. The method of the study were as follow. Method: Ten healthy adult males (age: 30.18 ± 4.2 yrs., height: 173.75 ± 2.99 cm, weight: 66.9 ± 2.64 kg), and who have a weekly exercise distance of more than 100 km and participated in amateur competitions with no lower extremity musculoskeletal injury within the past six months participated in this study. The experiment was conducted at three uphill slopes of 8%, 14%, and 20%, and the intensity of the experiment was 5.5 to 6 watts per kg of body weight for each slope for 4 minutes. A 3-Dimensional motion analysis with eight infrared cameras (sampling rate: 200 Hz) and five-channel of EMG (sampling rate: 2,000 Hz) was performed. In this study event 1, 2, 3, and 4 were set at angular position of pedal at 330°, 30°, 150° and 210°, respectively. Also connections of events were set as phases (P1~P4). A one-way ANOVA with repeated measures was conducted to verify the intervention effect and the statistical significance was set at α=.05. Results: As the uphill slope increased, the position of COM moved further back from the center of the cycle. In the knee joint, P1 and P3 showed greater ROM and higher angular velocity as the slope increased, while P2 and P4 showed opposite results. As the slope increased the peak activation timing was found to be faster for the vastus lateralis and biceps femoris, while the peak activation timing for the medial gastrocnemius muscle was delayed. Conclusion: There was a difference in kinematics as the uphill slope increased during cycling, and the difference between 8% and 14% showed a greater change than the difference between 14% and 20%.