• Title/Summary/Keyword: joint detection

Search Result 411, Processing Time 0.028 seconds

Treatment of Diabetic Charcot Arthropathy (당뇨병성 샤콧 관절의 치료)

  • Chung, Hyung-Jin
    • Journal of Korean Foot and Ankle Society
    • /
    • v.17 no.4
    • /
    • pp.243-250
    • /
    • 2013
  • Diabetic Charcot arthropathy is a severe joint disease in the foot and ankle that can result in fracture, permanent deformity, limb loss. Although recent research has improved our level of knowledge regarding its etiology and treatment, it still remains a poorly understood disease. It is a serious and potentially limb-threatening lower-extremity late complication of diabetes mellitus and its diagnosis is commonly missed upon initial presentation. Clinicians treating diabetic patients should be vigilant in recognizing early signs of acute Charcot arthropathy, such as pain, warmth, edema, or pathologic fracture in a neuropathic foot. Early detection and prompt treatment can prevent joint and bone destruction. If left untreated, it can reduce overall quality of life and dramatically increase morbidity and mortality of patients. The goal of this manuscript is to evaluate the current concepts of Charcot arthropathy through review of various literature and help clinicians decide the treatment strategy.

Optimal Electrode Selection for Detection of Human Leg Movement Using Bio-Impedance (생체 임피던스를 이용한 인체 하지운동 출을 위한 최적 전극위치 선정)

  • 송철규;윤대영;이동헌;김승찬;김덕원
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.506-509
    • /
    • 2003
  • This paper describes the possibility of analyzing gait pattern from the changes of the lower leg electrical impedance. This impedance was measured by the four-electrode method. Two current electrodes were applied to the thigh, knee, and foot., and two potential electrodes were applied to the lateral, medial, and posterior position of human leg. The correlation coefficients of the joint angle and the impedance change from human leg movement was obtained using a electrogoniometer and 4ch impedance measurement system developed in this study. We found the optimal electrode position for knee and ankle joint movements based on high correlation coefficient, least interference, and maximum magnitude of impedance change. The correlation coefficients of the ankle, knee, and the hip movements were -0.913, 0.984 and 0.823, respectively. From such features of the human leg impedance, it has been made clear that different movement patterns exhibit different impedance patterns and impedance level. This system showed feasibility that lower leg movement could be easily measured by impedance measurement system with a few skin-electrodes.

Fast-convergence trilinear decomposition algorithm for angle and range estimation in FDA-MIMO radar

  • Wang, Cheng;Zheng, Wang;Li, Jianfeng;Gong, Pan;Li, Zheng
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.120-132
    • /
    • 2021
  • A frequency diverse array (FDA) multiple-input multiple-output (MIMO) radar employs a small frequency increment across transmit elements to produce an angle-range-dependent beampattern for target angle and range detection. The joint angle and range estimation problem is a trilinear model. The traditional trilinear alternating least square (TALS) algorithm involves high computational load due to excessive iterations. We propose a fast-convergence trilinear decomposition (FC-TD) algorithm to jointly estimate FDA-MIMO radar target angle and range. We first use a propagator method to obtain coarse angle and range estimates in the data domain. Next, the coarse estimates are used as initialized parameters instead of the traditional TALS algorithm random initialization to reduce iterations and accelerate convergence. Finally, fine angle and range estimates are derived and automatically paired. Compared to the traditional TALS algorithm, the proposed FC-TD algorithm has lower computational complexity with no estimation performance degradation. Moreover, Cramer-Rao bounds are presented and simulation results are provided to validate the proposed FC-TD algorithm effectiveness.

An Evaluation Method for the Musculoskeletal Hazards in Wood Manufacturing Workers Using MediaPipe (MediaPipe를 이용한 목재 제조업 작업자의 근골격계 유해요인 평가 방법)

  • Jung, Sungoh;Kook, Joongjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.117-122
    • /
    • 2022
  • This paper proposes a method for evaluating the work of manufacturing workers using MediaPipe as a risk factor for musculoskeletal diseases. Recently, musculoskeletal disorders (MSDs) caused by repeated working attitudes in industrial sites have emerged as one of the biggest problems in the industrial health field while increasing public interest. The Korea Occupational Safety and Health Agency presents tools such as NIOSH Lifting Equations (NIOSH), OWAS (Ovako Working-posture Analysis System), Rapid Upper Limb Assessment (RULA), and Rapid Entertainment Assessment (REBA) as ways to quantitatively calculate the risk of musculoskeletal diseases that can occur due to workers' repeated working attitudes. To compensate for these shortcomings, the system proposed in this study obtains the position of the joint by estimating the posture of the worker using the posture estimation learning model of MediaPipe. The position of the joint is calculated using inverse kinetics to obtain an angle and substitute it into the REBA equation to calculate the load level of the working posture. The calculated result was compared to the expert's image-based REBA evaluation result, and if there was a result with a large error, feedback was conducted with the expert again.

Virtual Design and Construction (VDC)-Aided System for Logistics Monitoring: Supply Chains in Liquefied Natural Gas (LNG) Plant Construction

  • Moon, Sungkon;Chi, Hung-Lin;Forlani, John;Wang, Xiangyu
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.195-199
    • /
    • 2015
  • Many conventional management methods have emphasized the minimization of required resources along the supply chain. Accordingly, this paper presents a proposed method called the Virtual Design and Construction (VDC)-aided system. It is based on object-oriented resource control, in order to accomplish a feed-forward control monitoring supply chain logistics. The system is supported by two main parts: (1) IT-based Technologies; and (2) VDC Models. They enable the system to convey proactive information from the detection technology to its linked visualization. The paper includes a field study as the system's pre-test: the Scaffolding Works in a LNG Mega Project. The study demonstrates a system of real-time productivity monitoring by use of the RFIDbased Mobile Information Hub. The on-line 'productivity dashboard' provides an opportunity to display the continuing processes for each work-package. This research project offers the observed opportunities created by the developed system. Future work will entail research experiments aimed towards system validation.

  • PDF

Transmission of ultrasonic guided wave for damage detection in welded steel plate structures

  • Liu, Xinpei;Uy, Brian;Mukherjee, Abhijit
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.445-461
    • /
    • 2019
  • The ultrasonic guided wave-based technique has become one of the most promising methods in non-destructive evaluation and structural health monitoring, because of its advantages of large area inspection, evaluating inaccessible areas on the structure and high sensitivity to small damage. To further advance the development of damage detection technologies using ultrasonic guided waves for the inspection of welded components in structures, the transmission characteristics of the ultrasonic guided waves propagating through welded joints with various types of defects or damage in steel plates are studied and presented in this paper. A three-dimensional (3D) finite element (FE) model considering the different material properties of the mild steel, high strength steel and austenitic stainless steel plates and their corresponding welded joints as well as the interaction condition of the steel plate and welded joint, is developed. The FE model is validated against analytical solutions and experimental results reported in the literature and is demonstrated to be capable of providing a reliable prediction on the features of ultrasonic guided wave propagating through steel plates with welded joints and interacting with defects. Mode conversion and scattering analysis of guided waves transmitted through the different types of weld defects in steel plates are performed by using the validated FE model. Parametric studies are undertaken to elucidate the effects of several basic parameters for various types of weld defects on the transmission performance of guided waves. The findings of this research can provide a better understanding of the transmission behaviour of ultrasonic guided waves propagating through welded joints with defects. The method could be used for improving the performance of guided wave damage detection methods.

Piezoelectric impedance based damage detection in truss bridges based on time frequency ARMA model

  • Fan, Xingyu;Li, Jun;Hao, Hong
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.501-523
    • /
    • 2016
  • Electromechanical impedance (EMI) based structural health monitoring is performed by measuring the variation in the impedance due to the structural local damage. The impedance signals are acquired from the piezoelectric patches that are bonded on the structural surface. The impedance variation, which is directly related to the mechanical properties of the structure, indicates the presence of local structural damage. Two traditional EMI-based damage detection methods are based on calculating the difference between the measured impedance signals in the frequency domain from the baseline and the current structures. In this paper, a new structural damage detection approach by analyzing the time domain impedance responses is proposed. The measured time domain responses from the piezoelectric transducers will be used for analysis. With the use of the Time Frequency Autoregressive Moving Average (TFARMA) model, a damage index based on Singular Value Decomposition (SVD) is defined to identify the existence of the structural local damage. Experimental studies on a space steel truss bridge model in the laboratory are conducted to verify the proposed approach. Four piezoelectric transducers are attached at different locations and excited by a sweep-frequency signal. The impedance responses at different locations are analyzed with TFARMA model to investigate the effectiveness and performance of the proposed approach. The results demonstrate that the proposed approach is very sensitive and robust in detecting the bolt damage in the gusset plates of steel truss bridges.

Outcomes of Non-Operative Management for Pseudarthrosis after Pedicle Subtraction Osteotomies at Minimum 5 Years Follow-Up

  • Kim, Yong-Chan;Kim, Ki-Tack;Kim, Cheung-Kue;Hwang, Il-Yeong;Jin, Woo-Young;Lenke, Lawrence G.;Cha, Jae-Ryong
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.5
    • /
    • pp.567-576
    • /
    • 2019
  • Objective : Minimal data exist regarding non-operative management of suspected pseudarthrosis after pedicle subtraction osteotomy (PSO). This study reports radiographic and clinical outcomes of non-operative management for post-PSO pseudarthrosis at a minimum 5 years post-detection. Methods : Nineteen consecutive patients with implant breakage indicating probable pseudarthrosis after PSO surgery (13 women/six men; mean age at surgery, 58 years) without severe pain and disability were treated with non-operative management (mean follow-up, 5.8 years; range, 5-10 years). Non-operative management included medication, intermittent brace wearing and avoidance of excessive back strain. Radiographic and clinical outcomes analysis was performed. Results : Sagittal vertical axis (SVA), proximal junctional angle, thoracic kyphosis achieved by a PSO were maintained after detection of pseudarthrosis through ultimate follow-up. Lumbar lordosis and PSO angle decreased at final follow-up. There was no significant change in Oswestry Disability Index (ODI) scores and Scoliosis Research Society (SRS) total score, or subscales of pain, self-image, function, satisfaction and mental health between detection of pseudarthrosis and ultimate follow-up. SVA greater than 11 cm showed poorer ODI and SRS total score, as well as the pain, self-image, and function subscales (p<0.05). Conclusion : Non-operative management of implant failure of probable pseudarthrosis after PSO offers acceptable outcomes even at 5 years after detection of implant breakage, provided SVA is maintained. As SVA increased, outcome scores decreased in this patient population.

Identification of a conservative site in the African swine fever virus p54 protein and its preliminary application in a serological assay

  • Xu, Lingyu;Cao, Chenfu;Yang, Zhiyi;Jia, Weixin
    • Journal of Veterinary Science
    • /
    • v.23 no.4
    • /
    • pp.55.1-55.12
    • /
    • 2022
  • Background: ASF was first reported in Kenya in 1910 in 1921. In China, ASF spread to 31 provinces including Henan and Jiangsu within six months after it was first reported on August 3, 2018. The epidemic almost affected the whole China, causing direct economic losses of tens of billions of yuan. Cause great loss to our pig industry. As ELISA is cheap and easy to operate, OIE regards it as the preferred serological method for ASF detection. P54 protein has good antigenicity and is an ideal antigen for detection. Objective: To identify a conservative site in the African swine fever virus (ASFV) p54 protein and perform a Cloth-enzyme-linked immunosorbent assay (ELISA) for detecting the ASFV antibody in order to reduce risks posed by using the live virus in diagnostic assays. Method: We used bioinformatics methods to predict the antigen epitope of the ASFV p54 protein in combination with the antigenic index and artificially synthesized the predicted antigen epitope peptides. Using ASFV-positive serum and specific monoclonal antibodies (mAbs), we performed indirect ELISA and blocking ELISA to verify the immunological properties of the predicted epitope polypeptide. Results: The results of our prediction revealed that the possible antigen epitope regions were A23-29, A36-45, A72-94, A114-120, A124-130, and A137-150. The indirect ELISA showed that the peptides A23-29, A36-45, A72-94, A114-120, and A137-150 have good antigenicity. Moreover, the A36-45 polypeptide can react specifically with the mAb secreted by hybridoma cells, and its binding site contains a minimum number of essential amino acids in the sequence 37DIQFINPY44. Conclusions: Our study confirmed a conservative antigenic site in the ASFV p54 protein and its amino acid sequence. A competitive ELISA method for detecting ASFV antibodies was established based on recombinant p54 and matching mAb. Moreover, testing the protein sequence alignment verified that the method can theoretically detect antibodies produced by pigs affected by nearly all ASFVs worldwide.

Diagnostic Efficacy of PET in Soft Tissue Tumors: Comparative Study with Conventional Methods (연부 조직 종양에서 PET의 유용성: 기존의 진단법과의 비교 연구)

  • Seo, Sung-Wook;Park, Sang-Min;Cho, Hwan-Seong
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.11 no.1
    • /
    • pp.32-39
    • /
    • 2005
  • Introduction: Currently, F-18 fluorodeoxyglucose positron emission tomography scans (FDG-PET) has been investigated in soft tissue tumor especially for tumor detection and noninvasive grading. However, the validity and the efficacy of FDG-PET are still unclear in clinical evaluation. The purpose of this study is to determine the efficacy of FDG-PET in compared to conventional diagnostic imaging studies currently used in the soft tissue tumor. Methods: Between March 2001 and March 2002, 29 patients (sixteen males, thirteen females, mean age, 47 years; a range from 4 to 73) diagnosed with soft tissue tumor were evaluated by both conventional diagnostic imaging and FDG-PET. Valid reference test of the local lesion was the histopathologic diagnosis, which was measured in all patients. The suspecting metastasis in the imaging studies was validated by pathology or follow up imaging for at least 6 months. Each imaging diagnosis was made independently. The accuracy of each diagnostic method was evaluated. The incremental cost accuracy ratio was determined in each diagnostic method. Results: For detection of local lesion, sensitivity, specificity, and accuracy for MRI and FDGPET scans were 91%, 57%, 83% and 95%, 43%, 83% respectively. For detection of distant lesion, sensitivity, specificity, accuracy for conventional diagnostic methods and FDG-PET scans were 77%, 89%, 87% and 92%, 94%, 93% respectively. The incremental cost accuracy ratio (ICAR) of FDG-PET for detection of distant lesion was 145,000won/%. According to ICAR for each tumor grade, PET strategy is most cost-effective at high grade tumors. Conclusions: For detection of local lesion such as recurrence or remnant tumor, FDG-PET scan was not more accurate than MRI. However, It was more accurate for detection of metastatic lesion than conventional methods. For detection of high grade tumor, PET was most costeffective than for detection of lower grade tumor.

  • PDF