• 제목/요약/키워드: joint crack

검색결과 520건 처리시간 0.023초

결함해석에 기초한 배관용접부 수명평가 (Flaw Analysis Based Life Assessment of Welded Tubular Joint)

  • 이형일;한태수;정재헌
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1331-1342
    • /
    • 2000
  • In power generation systems a variety of structural components typically operate at high temperature and pressure. Therefore a life assessment methodology accounting for gradual creep fracture is increasingly needed for these components. The most critical defects in such structure are generally found in the form of semi-elliptical surface cracks in the welded tubular joints. Therefore the analysis of a semi-elliptical surface crack in a plate or a shell is an important problem in engineering fracture mechanics. On this background, via shell/line-spring finite element analyses of such surface cracks in the welded T and L joints under various loadings, we investigate J-integral along the crack front We first develop T and L joints auto mesh generation program providing ABAQUS input file composed of shell/line-spring finite elements. We then further develop a T and L joints life assessment program based on the experimental creep crack growth law and auto mesh generation program in a graphical user interface format Finally the remaining life of T and L joints for various analytical parameters are assessed using the developed life assessment program.

시간-주파수 해석법에 의한 5083 알루미늄의 피로균열 진전에 의할 음향방출 신호의 주파수특성 (Frequency Characteristics of Acoustic Emission Signal from Fatigue Crack Propagation in 5083 Aluminum by Joint Time-Frequency Analysis Method)

  • 남기우;이건찬
    • 한국해양공학회지
    • /
    • 제17권3호
    • /
    • pp.46-51
    • /
    • 2003
  • Acoustic emission (AE) signals, emanated during local failure of aluminum alloys, have been the subject of numerous investigations. It is well known that the characteristics of AE are strongly influenced by the previous thermal and mechanical treatment of the sample. Possible sources of AE during deformation have been suggested as the avalanche motion of dislocations, fracture of brittle particles, and debonding of these particles from the alloy matrix. The goal of the present study is to determine if AE occurring as the result of fatigue crack propagation could be evaluated by the joint time-frequency analysis method, short time Fourier transform (STFT), and Wigner-Ville distribution (WVD). The time-frequency analysis methods can be used to analyze non-stationary AE more effectively than conventional techniques. STFT is more effective than WVD in analyzing AE signals. Noise and frequency characteristics of crack openings and closures could be separated using STFT. The influence of various fatigue parameters on the frequency characteristics of AE signals was investigated.

The investigation of rock cutting simulation based on discrete element method

  • Zhu, Xiaohua;Liu, Weiji;Lv, Yanxin
    • Geomechanics and Engineering
    • /
    • 제13권6호
    • /
    • pp.977-995
    • /
    • 2017
  • It is well accepted that rock failure mechanism influence the cutting efficiency and determination of optimum cutting parameters. In this paper, an attempt was made to research the factors that affect the failure mechanism based on discrete element method (DEM). The influences of cutting depth, hydrostatic pressure, cutting velocity, back rake angle and joint set on failure mechanism in rock-cutting are researched by PFC2D. The results show that: the ductile failure occurs at shallow cutting depths, the brittle failure occurs as the depth of cut increases beyond a threshold value. The mean cutting forces have a linear related to the cutting depth if the cutting action is dominated by the ductile mode, however, the mean cutting forces are deviate from the linear relationship while the cutting action is dominated by the brittle mode. The failure mechanism changes from brittle mode with larger chips under atmospheric conditions, to ductile mode with crushed chips under hydrostatic conditions. As the cutting velocity increases, a grow number of micro-cracks are initiated around the cutter and the volume of the chipped fragmentation is decreasing correspondingly. The crack initiates and propagates parallel to the free surface with a smaller rake angle, but with the rake angle increases, the direction of crack initiation and propagation is changed to towards the intact rock. The existence of joint set have significant influence on crack initiation and propagation, it makes the crack prone to propagate along the joint.

Fatigue Strength and Root-Deck Crack Propagation for U-Rib to Deck Welded Joint in Steel Box Girder

  • Zhiyuan, YuanZhou;Bohai, Ji;Di, Li;Zhongqiu, Fu
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1589-1597
    • /
    • 2018
  • Fatigue tests and numerical analysis were carried out to evaluate the fatigue performance at the U-rib to deck welded joint in steel box girder. Twenty specimens were tested corresponding to different penetration rates (80 and 100%) under fatigue bending load, and the fatigue strength was investigated based on hot spot stress (HSS) method. The detailed stress distribution at U-rib to deck welded joint was analyzed by the finite element method, as well as the stress intensity factor of weld root. The test results show that the specimens with fully penetration rate have longer crack propagation life due to the welding geometry, resulting in higher fatigue failure strength. The classification of FAT-90 is reasonable for evaluating fatigue strength by HSS method. The penetration rate has effect on crack propagation angle near the surface, and the 1-mm stress below weld toe and root approves to be more suitable for fatigue stress assessment, because of its high sensitivity to weld geometry than HSS.

Mk-계수를 고려한 용접부 복수 표면균열 진전수명 평가 (Fatigue Life Estimation of Welded Joints by using Mk-factor under a Propagation Mechanism of Multiple Collinear Surface Cracks)

  • 한승호;한정우;신병천;김재훈
    • Journal of Welding and Joining
    • /
    • 제22권4호
    • /
    • pp.73-81
    • /
    • 2004
  • Failure mechanisms of welded joints under fatigue loads are interpreted that multiple collinear surface cracks initiating randomly along the weld toes propagate under the mutual interaction and coalescence of adjacent two cracks. To estimate fatigue crack propagation life for three types of the representative welded joints, i.e. non-load carrying cruciform, cover plate and longitudinal stiffener joint, the stress intensity factors at the front of the surface cracks have to be calculated, which are influenced strongly by the geometry of attachments, weld toes and the crack shapes. For the effective calculation of the stress intensity factors the Mk-factor was introduced which can be derived by a parametric study performed by FEM considering influence of the geometrical effects. The fatigue life of the cruciform joint was estimated by using the Mk-factors and the method considering the propagation mechanisms of the multiple surface cracks. Analysis results for the fatigue life had a good agreement with that of experiment.

Modified discontinuous deformation analysis for rock failure: Crack propagation

  • Chen, Yunjuan;Zhang, Xin;Zhu, Weishen;Wang, Wen
    • Geomechanics and Engineering
    • /
    • 제14권4호
    • /
    • pp.325-336
    • /
    • 2018
  • Deformation of rock masses is not only related to rock itself, but also related to discontinuities, the latter maybe greater. Study on crack propagation at discontinuities is important to reveal the damage law of rock masses. DDARF is a discontinuous deformation analysis method for rock failure and some modified algorithms are proposed in this study. Firstly, coupled modeling methods of AutoCAD-DDARF and ANSYS-DDARF are introduced, which could improve the modeling efficiency of DDARF compared to its original program. Secondly, a convergence criterion for automatically judging the computation equilibrium is established, it could overcome subjective drawbacks of ending one calculation by time steps. Lastly but not the least, relationship between the super relaxation factor and the calculation convergence is analyzed, and reasonable value range of the super relaxation factor is obtained. Based on these above modified programs, influences on crack propagation of joint angle, joint parameters and geo-stresses' side pressure are studied.

Guidelines for Joint Depth Determination and Timing of Contraction Joint Sawcutting for JCP Analyzed with Fracture Mechanics

  • Yang, Sung-Chul;Hong, Seung-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.145-150
    • /
    • 2006
  • An experiment with the objective of providing guidelines for joint depth determination and timing of contraction joint sawcutting to avert uncontrolled cement concrete pavement cracking has been conducted. Theoretical analysis and laboratory tests were performed to help in understanding and analyzing the field observation. Using two-dimensional elastic fracture mechanics, the influence of several parameters on crack propagation was delineated by a parametric study, involving initial notch ratio, joint spacing, Young's modulus and thermal expansion coefficient of concrete, temperature gradient, and modulus of subgrade reaction. Bimaterials made of rock plus cement mortar and rock plus polymer mortar were applied to the concrete in a field test section, and they were subjected to fracture tests. These tests have shown that fracture mechanics is a powerful tool not only in judging the quality of the jointed cement concrete pavement but also in providing a criterion for crack propagation and delamination. Based on fracture mechanics, a method is proposed to determine the joint depth, sawcut timing, and spacing of the jointed cement concrete pavement. This method has successfully been applied to a test section in Seohaean expressway. This study also summarizes the research results obtained from a field test for jointed plain concrete pavement, which was also carried out on the Seohaean expressway.

Crack growth analysis and remaining life prediction of dissimilar metal pipe weld joint with circumferential crack under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Vishnuvardhan, S.;Sudharshan, G.
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2949-2957
    • /
    • 2020
  • Fatigue crack growth model has been developed for dissimilar metal weld joints of a piping component under cyclic loading, where in the crack is located at the center of the weld in the circumferential direction. The fracture parameter, Stress Intensity Factor (SIF) has been computed by using principle of superposition as KH + KM. KH is evaluated by assuming that, the complete specimen is made of the material containing the notch location. In second stage, the stress field ahead of the crack tip, accounting for the strength mismatch, the applied load and geometry has been characterized to evaluate SIF (KM). For each incremental crack depth, stress field ahead of the crack tip has been quantified by using J-integral (elastic), mismatch ratio, plastic interaction factor and stress parallel to the crack surface. The associated constants for evaluation of KM have been computed by using the quantified stress field with respect to the distance from the crack tip. Net SIF (KH + KM) computed, has been used for the crack growth analysis and remaining life prediction by Paris crack growth model. To validate the model, SIF and remaining life has been predicted for a pipe made up of (i) SA312 Type 304LN austenitic stainless steel and SA508 Gr. 3 Cl. 1. Low alloy carbon steel (ii) welded SA312 Type 304LN austenitic stainless-steel pipe. From the studies, it is observed that the model could predict the remaining life of DMWJ piping components with a maximum difference of 15% compared to experimental observations.

기계적 체결부 균열의 피로균열성장에 관한 연구 (A Study on the Fatigue Crack Growth of Cracks in Mechanical Joints)

  • 허성필;양원호;정기현
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.187-194
    • /
    • 2002
  • It has been reported that cracks in mechanical joints is generally under mixed-mode and there is critical inclined angle at which mode I stress intensity factor becomes maximum. The crack propagates in arbitrary direction and thus the prediction of crack growth path is needed to provide against crack propagation or examine safety. In order to evaluate the fatigue life of cracks in mechanical joints, horizontal crack normal to the applied load and located on minimum cross section is major concern but critical inclined crack must also be considered. In this paper mixed-mode fatigue crack growth test is performed far horizontal crack and critical inclined crack in mechanical joints. Fatigue crack growth path is predicted by maximum tangential stress criterion using stress intensity factor obtained from weight function method, and fatigue crack growth rates of horizontal and inclined crack are compared.

Assessment of Fatigue and Fracture on a Tee-Junction of LMFBR Piping Under Thermal Striping Phenomenon

  • Lee, Hyeong-Yeon;Kim, Jong-Bum;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.267-275
    • /
    • 1999
  • This paper deals with the industrial problem of thermal striping damage on the French prototype fast breeder reactor, Phenix and it was studied in coordination with the research program of IAEA. The thermomechanical and fracture mechanics evaluation procedure of thermal striping damage on the tee-junction of the secondary piping using Green's function method and standard FEM is presented. The thermohydraulic(T/H) loading condition used in the present analysis is the random type thermal loads computed by T/H analysis on the turbulent mixing of the two flows with different temperatures. The thermomechanical fatigue damage was evaluated according to ASME code section 111 subsection NH. The results of the fatigue analysis showed that fatigue failure would occur at the welded joint within 90,000 hours of operation. The assessment for the fracture behavior of the welded joint showed that the crack would be initiated at an early stage in the operation. It took 42,698.9 hours for the crack to propagate up to 5 mm along the thickness direction. After then, however, the instability analysis, using tearing modulus, showed that the crack would be arrested, which was in agreement with the actual observation of the crack. An efficient analysis procedure using Green's function approach for the crack propagation problem under random type load was proposed in this study. The analysis results showed good agreement with those of the practical observations.

  • PDF