• 제목/요약/키워드: joint crack

검색결과 520건 처리시간 0.021초

콘크리트포장의 줄눈깊이 및 절단시기에 관한 유도균열 거동특성 연구 (Field Test and Analysis of Joint Depths and Timing Contraction Joint Sawing for Concrete Pavement)

  • 홍승호;양성철;엄주용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.469-474
    • /
    • 1999
  • The object of study is analysis to joint crack behavior of cracked joint concrete pavement. In the new constructing concrete pavement, joint crack behavior was compared general joint depth D/4 with joint depth D/3 and D/5 that it's environmental effects changed temperature and humidity. After joint saw cutting joint section was predicted crack at joint depth D/5 test section from the result for monitoring development of crack. In the setting of data logger system of the joint section, it's data compared see with the naked eye. In the research, development of crack at the joint section should effect to joint saw timing latter than joint depth. This performance could be the minimum of deterioration to the early curing. In this research, At new constructing of joint concrete pavement of highway, the monitoring system be setting after finished paving and joint sawing. The system and see with the naked eye could be analysis to pavement behaviors from collecting data at the test section. This system could be monitoring shot term and long term. In this report, joint section of crack behavior analysis used to collected data during a month after paving and joint sawing.

  • PDF

줄눈균열 유도장치를 사용한 콘크리트 포장의 줄눈거동 (Joint Behavior of Concrete Pavements Using Joint Crack Inducer)

  • 박문길;최기효;남영국;정진훈
    • 대한토목학회논문집
    • /
    • 제28권1D호
    • /
    • pp.57-65
    • /
    • 2008
  • 콘크리트 포장의 줄눈은 초기 콘크리트 슬래브에 건조수축과 온도변화에 의한 무작위 균열이 발생하지 않도록 해주어 도로포장의 공용성 향상에 기여한다. 하지만 콘크리트가 충분히 양생되기 전에 수행된 줄눈 절단 작업은 줄눈 주변의 콘크리트에는 미세균열 등의 손상을 발생시키고 이로 인하여 반복적인 교통 및 환경하중에 의한 줄눈부의 파손이 장기적으로 발생한다. 본 연구에서는 이러한 인위적인 줄눈 절단작업 때문에 발생할 수 있는 줄눈부 파손을 감소시키기 위하여 선행연구를 통해 개발된 100mm, 150mm, 220mm 높이의 줄눈균열 유도장치와 다양한 깊이를 갖는 균열유도 홈을 시험시공 구간에 설치하고 줄눈균열의 발생과 거동을 약 5개월에 걸쳐 조사하였다. 그 결과, 줄눈균열 유도장치의 높이가 높을수록 균열유도 효과가 높은 반면 줄눈균열의 거동은 큰 것으로 나타났다. 향후 추가적인 조사와 줄눈균열 유도장치의 개선을 통하여 균열유도 효율을 높이고 줄눈의 성능을 향상시켜야 할 것으로 판단되었다.

Residual static strength of cracked concrete-filled circular steel tubular (CFCST) T-joint

  • Cui, M.J.;Shao, Y.B.
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.1045-1062
    • /
    • 2015
  • Concrete-filled circular t steel tubular joints (CFSTJs) in practice are frequently subjected to fluctuated loadings caused by wind, earthquake and so on. As fatigue crack is sensitive to such cyclic loadings, assessment on performance of CFSTJs with crack-like defect attracts more concerns because both high stress concentration at the brace/chord intersection and welding residual stresses along weld toe cause the materials in the region around the intersection to be more brittle. Once crack initiates and propagates along the weld toe, tri-axial stresses in high gradient around the crack front exist, which may bring brittle fracture failure. Additionally, the stiffness and the load carrying capacity of the CFSTJs with crack may decrease due to the weakened connection at the intersection. To study the behaviour of CFSTJs with initial crack, experimental tests have been carried out on three full-scale CFCST T-joints with same configuration. The three specimens include one uncracked joint and two corresponding cracked joints. Load-displacement and load-deformation curves, failure mode and crack propagation are obtained from the experiment measurement. According to the experimental results, it can be found that he load carrying capacity of the cracked joints is decreased by more than 10% compared with the uncracked joint. The effect of crack depth on the load carrying capacity of CFCST T-joints seems to be slight. The failure mode of the cracked CFCST T-joints represents as plastic yielding rather than brittle fracture through experimental observation.

이종재료 용접부의 피로균열진전 특성 (Fatigue Crack Growth Characteristics on The Weld Joint of Bimaterial)

  • 권재도;김우현;박중철;배용탁;김중형
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1997년도 특별강연 및 추계학술발표 개요집
    • /
    • pp.81-85
    • /
    • 1997
  • This paper was conducted the fatigue crack growth test on the base metal and weld joint of bimaterial(carbon-stainless steel), carbon steel and stainless steel. As the result, the fatigue crack growth rate of weld joint on the stainless-stainless steel is faster than stainless base metal, and weld joint on the carbon-carbon steel heat affected zone is slower than carbon base metal. And fatigue crack growth rate of carbon-stainless steel weld joint and heat affected zone is similar to the behavior of stainless base metal. In conclusion, weld joint of bimaterial is stable in the fatigue crack growth behavior.

  • PDF

Crack control of precast deck loop joint using high strength concrete

  • Shim, Changsu;Lee, Chi dong;Ji, Sung-woong
    • Advances in concrete construction
    • /
    • 제6권5호
    • /
    • pp.527-543
    • /
    • 2018
  • Crack control of precast members is crucial for durability. However, there is no clear provision to check the crack width of precast joints. This study presents an experimental investigation of loop joint details for use in a precast bridge deck system. High strength concrete of 130 MPa was chosen for durability and closer joint spacing. Static tests were conducted to investigate the cracking and ultimate behavior of test specimens. The experimental results indicate that current design codes provide reasonable estimation of the flexural strength and cracking load of precast elements with loop joint of high strength concrete. However, the crack width control of the loop joints with high strength concrete by the current design practices was not appropriate. Some recommendations to improve crack control of the loop joint were derived.

에지계면균열을 갖는 단순겹치기 접착이음의 강도평가 (Analysis on the Bonded Single Lap-Joint Containing the Interface Edge Crack)

  • 유영철;박정환;이원
    • 한국정밀공학회지
    • /
    • 제15권6호
    • /
    • pp.159-166
    • /
    • 1998
  • The problem of interface crack in the bonded structures has received a great deal of attention in recent years. In this paper the aluminum bonded single lap-joint containing the interface edge crack is investigated. The tensile load and the average shear stress of the adhesive joints which have different crack length are obtained from the static tensile tests. The critical value of crack length to provoke the interface fracture is determined to a/L=0.4, where a is the interface crack length and L is the adhesive lap-length. The fracture mechanical parameters are introduced to confirm the existence of the critical crack length. The compliance and the stress intensity factors are calculated using the displacement and the stress near the interface crack tip by the boundary element method. These numerical results support the experimental results that the critical value of a/L is 0.4. It is known that the compliance and the stress intensity factors are the efficient parameters to estimate the bonded single lap-joint containing the interface edge crack.

  • PDF

조선 및 해양플랜트 구조물의 불안전 파괴방지 설계기술 (Design for avoid unstable fracture in shipbuilding and offshore plant structure)

  • 안규백;배홍열;노병두;안영호;최종교;우완측;박정웅
    • Journal of Welding and Joining
    • /
    • 제33권1호
    • /
    • pp.35-40
    • /
    • 2015
  • Recently, there have been the increase of ship size and the development of oil and gas in arctic region. These trends have led to the requirements such as high strength, good toughness at low temperature and good weldability for prevent of brittle fracture at service temperature. There has been the key issue of crack arrestability in large size structure such as container ship. In this report for the first time, crack arrest toughness of thick steel plate welds was evaluated by large scale ESSO test for estimate of brittle crack arrestability in thick steel plate. For large structures using thick steel plates, fracture toughness of welded joint is an important factor to obtain structural integrity. In general, there are two kinds of design concepts based on fracture toughness: crack initiation and crack arrest. So far, when steel structures such as buildings, bridges and ships were manufactured using thick steel plates (max. 80~100mm in thickness), they had to be designed in order to avoid crack initiation, especially in welded joint. However, crack arrest design has been considered as a second line of defense and applied to limited industries like pipelines and nuclear power plants. Although welded joint is the weakest part to brittle fracture, there are few results to investigate crack arrest toughness of welded joint. In this study, brittle crack arrest designs were developed for hatch side coaming of large container ships using arrest weld, hole, and insert technology.

강교량 맞대기용접 결함부의 피로수명 평가 (Fatigue Life Assessment of Steel Bridge Butt Joint Weld with Defects)

  • 백영남;장영권
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.204-204
    • /
    • 2000
  • There are many weld defects such as surface crack, lack of fusion, and incomplete penetration(IP) in the butt joint weld of the existing steel bridges. The crack-like defects may significantly reduce the life of the structure. This paper presents the procedure and the results of the fatigue life assessment of the butt joints with weld defects in the existing steel girder bridge. The butt joint welds with incomplete penetration were instrumented with strain gages to determine the stress histogram under normal traffic. Based on the measured stress histogram the crack propagation analysis were performed for the fatigue life assessment. By using the suggested procedure and methodology, one can decide the time of periodic inspection and the necessity of repair of the butt joint welds with serious weld defects in the existing steel bridge. (Received October 1, 1999)

강교량 맞대기용접 결함부의 피로수명 평가 (Fatigue Life Assessment of Steel Bridge Butt Joint Weld with Defects)

  • 백영남;장영권
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.77-85
    • /
    • 2000
  • There are many weld defects such as surface crack, lack of fusion, and incomplete penetration (IP) in the butt joint weld of existing steel bridges. The crack-like defects may significantly reduce the fatigue life of the structure. This paper presents the procedure and the results of the fatigue life assessment of the butt joints with weld defects in the existing steel girder bridge. The butt joint welds with incomplete penetration were instrumented with strain gages to determine the stress histogram under normal traffic. Based on the measured stress histogram the crack propagation analysis were performed for the fatigue life assessment. By using the suggested procedure and methodology, one can decide the time of periodic inspection and the necessity of repair of the butt joint welds with serious weld defects in the existing steel bridge.

  • PDF

십자형 필렛 용접 이음의 피로균열 에 대한 파괴 역학적 고찰 (A Study on the fracture Mechanical Behavior of Cruciform Welded Joint With Fracture Cracks)

  • 엄동석;강성원;유덕상
    • Journal of Welding and Joining
    • /
    • 제1권1호
    • /
    • pp.37-46
    • /
    • 1983
  • This paper describes a study of fillet welded joint stressed perpendicular to the weld line. The finite element method was used to determine the stress intensity factor for cruciform joint at weld toe and root cracks according to variation of H/Tp, weld angle and main plate thickness. But, in this study, weld angle was fixed at 45.deg., since the variation of weld angle affect the stress intensity factor little, also main plate thickness was fixed. Pulsating tension fatigue test was done at the second phase of experiment. The work using the concepts of the fracture mechanics on the stable crack growth, was in the correlation of the experimental fatigue stress-life behavior because the fatigue behaviors of various joint geometries are related to the stress intensity factors calculated by F.E.M. analysis. Main results obtained are summarized as follows. 1) According to the propagation of toe crack, the variation of the stress intensity factor at root crack is obvious as H/Tp is smaller. 2) According to the propagation of root cracks, the change of the stress intensity factor of the toe is very large with propagation of root crack. 3) The calculation formula of the stress intensity factor of crack propagation at the root crack was obtained. 4) The calculation formula of the stress intensity factor at the toe cracks was obtained in similar manner. 5) From the results of experiment, the velocity of fatigue crack propagation at the weld toe and root was estimated.

  • PDF