• Title/Summary/Keyword: joint characteristics

Search Result 1,962, Processing Time 0.03 seconds

Kinematic Characteristics of Walking-Assistance Robot (보행보조 로봇의 운동학적 특성)

  • Bae, Ha-Suk;Kim, Jin-Oh;Chun, Han-Yong;Park, Kwang-Hun;Lee, Kyung-Whan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.503-515
    • /
    • 2011
  • We developed a walking-assistance robot for walking rehabilitation and assessed the kinematic characteristics of a prototype. The walking-assistance robot is composed of hip, knee, and ankle joints, and each joint is driven by a motor with a decelerator. The equations of angular displacement while walking were derived by theoretically analyzing human locomotion, and the calculated angular displacements were then applied to the robot controller. The output angular displacement of each joint was measured and compared with its input angular displacement in walking experiments on a treadmill at various walking speeds and strides. The differences between the input and output angular displacements are 5.22% for the hip and 2.97% for the knee joints, and it has been confirmed that the walking-assistance robot works well.

Characteristics and Treatment of Temporomandibular Disorder in Children and Adolescents: An Analytic Review

  • Park, Hyung-Seok;Ahn, Yong-Woo;Jeong, Sung-Hee;Jeon, Hye-Mi;Ok, Soo-Min
    • Journal of Oral Medicine and Pain
    • /
    • v.42 no.4
    • /
    • pp.89-101
    • /
    • 2017
  • Purpose: The purpose of this study is to investigate the prevalence of temporomandibular disorders (TMDs) in children and adolescents, their characteristic contributing factors, the characteristic features of symptoms and symptoms, and the response to treatment. Methods: We studied the researches, that were the results of the searches for words such as temporomandibular disorder, TMD, children, adolescents, and juvenile through PubMed and DBpia. Results: According to a study conducted in Busan, the ratio of adolescents increased from 18.3% to 21% in 2008 compared to 2000, and the proportion of boys increased from 38.58% to 45.38%. One of the characteristic contributing factors for adolescents is the macrotrauma such as jaw trauma, vehicle accidents, sports, physical abuse, forceful intubation, and third molar extraction. The second is a microtrauma from parafunctional habit such as bruxism, clenching, hyperextension, wind instrument, and fingernail biting that can cause joint overload, cartilage breakdown, synovial fluid alterations, and other changes within the joint. The diagnosis of TMDs in juvenile adolescents is not significantly different from that of adults. Medical history, clinical examination and radiological examinations are required. Conclusions: In the temporomandibular joint history and assessment, all comprehensive dental history examination is required, including head and neck pain, mandibular dysfunction, previous orofacial trauma, history of present illness with an account of current symptoms. For the treatment and management of temporomandibular arthritis in juvenile adolescents, understanding the characteristics of TMDs in juvenile adolescents and thoroughly analyzing appropriate diagnosis and possible contributing factors through comprehensive history taking & examination, conservative treatment, including fast and active cautions education, will be essential.

Analysis of Micro-Doppler Signatures from Rotating Propellers Using Modified HHT Method (수정된 HHT 기법을 이용하여 회전하는 프로펠러 날개에 의한 마이크로 도플러 신호의 해석)

  • Park, Ji-Hoon;Choi, Ik-Hwan;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1100-1106
    • /
    • 2012
  • This paper has presented the analysis of the micro-Doppler signatures scattered from the blades of the rotating propeller using the modified HHT method, one of the joint time-frequency analysis methods. The field scattered from the blade edge of the propeller was calculated using equivalent current method(ECM). After the acquisition of the scattered field data in the time domain, the modified HHT method was applied to analyze the micro-Doppler signature. The analysis results showed not only a good agreement with the realistic dynamic characteristic of the blade but also sinusoidally varing characteristics of the micro-Doppler signatures generated from rotating objects. It could be concluded that the joint time-frequency analysis via the modified HHT provided the discriminative characteristics for recognizing a small aircraft target with small RCS value.

Friction Stir Welding Characteristics of AZ31 Mg Alloy by Orthogonal Array (직교배열법에 의한 AZ31 마그네슘 합금의 마찰교반접합 특성)

  • Kang, Dae-Min;Park, Kyoung-Do;Kang, Chung-Yun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.16-21
    • /
    • 2012
  • Magnesium alloy has been focussed as lightweight material owing to its high strength even though low density with aluminum alloy, titanium alloy and plastic material. Friction stir welding technique was performed by rotating and plunging a shouldered tool with a small diameter pin into the joint line between two butted plates and useful to join magnesium alloy. In this paper, the experiments of friction stir welding were done to investigate the joint characteristics of AZ31 magnesium alloy. For its evaluation, the orthogonal array method$(L_{27}(3^{13}))$ was applied with four factors of pin diameter, shoulder diameter, travel speed and rotation speed of tool and also three levels of each factor. Nine tools were worked through shoulder diameter of 9, 12, 15mm and pin root diameter of 3, 4, 5mm. In addition tensile tests were excuted for the assessment of mechanical properties for joint conditions. From the results, pin diameter, shoulder diameter, and rotating speed of tool influenced on the tensile strength meaningful, but welding speed did not influence on that by the variance analysis. Beside of that, optimum condition of tensile strength was estimated as following ; shoulder diameter:15mm, welding speed:200mm/min, rotating speed:200rpm.

The Comparison of the Thermal and Mechanical Characteristic in Butt Joint for Ship Structure Thick Plate AH32 Steel by SAW & Hybrid(CO2 Laser+MIG)Welding (조선용 후판 AH32 강에 대한 SAW 및 Hybrid(CO2 Laser+MIG) 맞대기 용접부의 열 및 역학적 특성 비교)

  • Bang, Han-Sur;Oh, Chong-In;Bang, Hee-Seon;Ro, Chan-Seung;Lee, Yoon-Ki;Bong, Hyun-Soo;Lee, Jeong-Soo
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.29-35
    • /
    • 2008
  • In this paper concentrate on the comparison of the thermal and mechanical characteristics in Butt joint of ship structure AH32 steel by using hybrid welding and conventional SAW. For this purpose, fundamental welding phenomena of hybrid process using $CO_2$ Laser and MIG is investigated by the experiments and characteristics of thermal and welding residual stress distribution of welded joint in SAW and hybrid welding are understood from the result of FE numerical simulation and experimental values. From the result of this study, it is understood that Laser-MIG hybrid welding have high potential, make substantial saving of time and manufacturing cost and may proves its self robust in the butt joining of thick AH32 steel ship structural plate in the near future.

A Study on the Behavioral Characteristics of Bellows for Expansion Joints (신축이음용 벨로우즈의 거동특성에 관한 연구)

  • Jeong, Doo-Hyung;Chin, Do-Hun;Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.52-58
    • /
    • 2020
  • Bellows are corrugated mechanical elements used to absorb displacements or vibrations caused by temperature changes, pressure, earthquakes, waves, etc., which are welded to flanges or directly connected to pipes. Expansion joint bellows must not only be designed to sufficiently withstand the internal pressure of the pipes but also accommodate axial, transverse, and rotational deformations to minimize the transfer of forces to the sensitive components of the system. Bellows have various types of corrugations, but U-type bellows are most commonly used in general piping systems. In this study, the behavior of U-shaped one-, two-, and three-ply bellows with the same inner diameter under pressure and forced displacement was analyzed using the finite element method. The results were compared with the design formula in the Expansion Joint Manufacturers Association (EJMA)'s code. Manufacturer data were used for the applied pressure and force displacement. The behavioral characteristics of the three cases were compared via structural analysis because the stress levels will be different for each model, even if they have the same inner diameter. Since the analytical model has an axisymmetric shape but displacement occurs in the transverse direction, the finite element model was composed of 1/2 of the whole model, and ANSYS Workbench 17.2 was employed for the analysis.

Fatigue Performance of Bridge Decks using Half-Depth Precast Panel with Loop Joint (루프이음 반단면 프리캐스트 패널을 이용한 교량 바닥판의 피로성능)

  • Chung, Chul Hun;Lim, Seung Jun;Kim, Hyun Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.35-43
    • /
    • 2010
  • The panels are used as a composite part of the completed deck. They replace the main bottom transverse deck reinforcement and also serve as a form surface for the cast-in-place concrete upper layer that contains the top of deck reinforcement. However, in order to apply the precast panels to bridges properly, it is necessary to fully understand the structural characteristics of joint in precast panels. Particularly, since the bridge deck is under repeated loads such as traffic loads, fatigue behavior and characteristics of joint should be investigated. In this paper, fatigue tests of composite deck with shear ties and loop joints were conducted. The fatigue tests were conducted with an application of repeated loading and wheel loading. Test results were analyzed to examine the current design code for fatigue of reinforcement bar and serviceability under repeated loading.

Process Development of Rotor Shaft using a Large Friction Welding (대형마찰용접을 이용한 로타샤프트 제조공정개발)

  • Jeong, H.S.;Cho, J.R.;Lee, N.K.;Park, H.C.;Choi, S.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.401-404
    • /
    • 2007
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint face, and energy required for welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy, amount of upset, working time, and residual stresses in the joint. Inertia welding was conducted to make the large rotor shaft for low speed marine diesel engine, alloy steel for shaft of 140mm. Due to different material characteristics, such as, thermal conductivity and flow stress, on the two sides of the weld interface, modeling is crucial in determining the optimal weld geometry and parameters. FE simulation was performed by the commercial code DEFORM-2D. A good agreement between the predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters.

  • PDF

Beam-Column Junction Type Damper of Seismic Performance Enhancement for Structures (구조물의 내진성능 보강을 위한 보-기둥 접합형 감쇠장치)

  • Noh, Jung-Tae;Woo, Sung-Sik;Lee, Sang-Hyun;Chung, Lan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.855-863
    • /
    • 2009
  • In this study, a beam-column junction type damper is proposed which saves the inner and outer space for the installation of damping devices and allows easy adjustment of control performance The result of the numerical analysis indicated that the displacement response and base shear of a single degree of freedom system by seismic load, El Centro 1940 was reduced with yield moment of the joint hinge and the specific yield moment ratio $\delta$ of the joint hinge existed for the optimal seismic performance. In addition, the dynamic nonlinear characteristics, effects of yielding and dependence of natural period of bi-linear system with the junction type damper is identified. The analysis of multi-degree of freedom system showed that responses of the controlled structures was reduced significantly as the number of a story increases and yield moment ratio decreases when the system is excited by seismic load and sine wave. On top of that, it was also observed that energy dissipation at the joint connected with the dampers was remarkable during excitation.

  • PDF

Effective Methods Reducing Joint Vibration and Elongation in High speed Rail Bridge (고속철도교 신축부의 진동 및 신축의 효율적인 저감 방안)

  • Min, Kyung-Ju;Kang, Tae-Ku;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.800-806
    • /
    • 2011
  • Thermal expansion which occurs at the high speed rail joint is proportional to the free length from the point of fixity. This thermal expansion behaves similar to free expansion because the girder longitudinal stiffness is much larger than longitudinal resistance of rail pads. But the longitudinal displacement in the long rail is nominal because the longitudinal support condition of the girder is normally MFM(movable-fix-movable) system. Due to these girder expansion characteristics, there is longitudinal relative displacement at the rail pad and rail fastener spring which connects rail and girder. If the relative displacement between rail and girder is beyond the elastic limit for the rail pad, rail fastener system shall be applied using sliding fastener to prevent rail pad damage and fastener separation resulting from slip. On the other hand, train vertical vibration and tilting can occur due to the lack of fastener vertical force if the sliding fastener is applied at the girder joint. In the high speed rail bridge, vibration can occur due to the spring stiffness of the elastomeric bearing, also both vertical downward and upward displacement can occur. The elastomeric bearing vertical movement can cause rail displacement and finally the stability of the ballast is reduced because the gravel movement is induced.

  • PDF