• Title/Summary/Keyword: joint characteristics

Search Result 1,951, Processing Time 0.03 seconds

Weldability and Optimum Welding Conditions on the 4 Lap Spot Welded Joint of High Strength Steel Sheets in Automobile (고장력 강판 적용에 따른 자동차용 4겹 다층 점용접물의 용접성 및 적정 용접조건)

  • Kwon Il-Hyun;Kim Hoi-Hyun;Baek Seung-Se;Yang Seong-Mo;Yu Hyo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.481-487
    • /
    • 2006
  • Spot-welding is a widely used manufacturing method for thin-sheet components, especially in mass-production industries such as the car industry. Automobiles are often constructed by multi-lap spot welding to secure the passenger from the accident, where optimisation of the welding conditions is a major economic consideration. This research is conducted to investigate weldability characteristics with various welding conditions on the 4-lap spot welded joint of structural steel sheets in automobile. The relationship between the tensile-shear strength and the indentation depth has been investigated to propose the optimum welding conditions. The welding current and the welding time have a greater effect on the welding characteristics than the electrode force. It was found that the electrode force has a relatively close relationship with the expulsion occurrence. The design curves for optimum welding are proposed for the 4-lap spot welded joint.

Analysis Model of Semi-Rigid Joint Using Finite Element Method (유한요소법을 이용한 반강접합부의 구조해석모델)

  • Yang, Han-Seung;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.40-47
    • /
    • 1995
  • This study was carried out to develop a finite element analysis model that considers the semi-rigid characteristics of a wood-dowel joint, which is different from conventional joints that are used in the field of engineering. Wood-dowel joints are classified as semi-rigid joints that possess the following characteristics: (1) they are less stiffer than rigid joints and (2) their stiffness is determined by the dowel's diameter, depth of dowel embedment in the face member and quantity of pin dowels. In this study a finite element model that considers the changes in stiffness according to the above mentioned factors was developed and its suitability was verified by experiments using a wood-dowel joint test specimen made up of particleboards. After comparing the experimental results and the analysis results of the wood-dowel joint which was applied with the proposed finite element model, less than 10% of error was found which is considered to be negligibly small. Hence this shows that this proposed finite element model can be used to predict deformation of wood-dowel joints.

  • PDF

Deformation Behaviors and Acoustic Emissions of Rock Joints in Direct Shear (직접전단시험을 통한 암석 절리의 변형거동 및 미소파괴음 발생에 관한 연구)

  • 김태혁;이상돈;이정인
    • Tunnel and Underground Space
    • /
    • v.4 no.3
    • /
    • pp.274-286
    • /
    • 1994
  • Direct shear tests were on ducted in a laboratory setting in order to investigate the shear strength and deformation behavior of rock joints. Also, the characteristics of acoustic emissions (AE) during shearing of rock joints were studied. The artificial rock joints were created by splitting the intact blocks of Hwangdeung granites and Iksan marbles. Joint roughness profiles were measured by a profile gage and then digitized by Image analyzer. Roughness profile indices(Rp) of the joints were calculated with these digitized data. Peak shear strength, residual shear strength, shear stiffness and maximum acoustic emission(AE) rate were investigated with joint roughness. The peak shear strenght, the residual shear strength and the shear stiffness were increased as roughness popfile index or normal stress increased in the shear tests of granites. In the tests of marble samples, the shear deformation characteristics were not directly affected by joint roughness. As the result of two directional shear tests, the shear characteristics were varied with shear direction. AE count rates were measured during the shear deformation and the AE signals in several stages of the deformation were analyzed in a frequency domain. The AE rate peaks coincided with the stress drops during the shear deformation of joint. The dominant frequencies of the AE signals were in the vicinity of 100 kHz fo rgranite sample and 900 kHz for marble samples. The distribution of amplitude was dispersed with increasing normal stress.

  • PDF

Estimation of Elastic Modulus in Rock Mass for Assessing Displacment in Rock Tunnel (암반터널에서의 변위파악을 위한 암반 탄성계수 추정)

  • Son, Moorak;Li, Sudan;Lee, Wonki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2C
    • /
    • pp.83-92
    • /
    • 2011
  • Elastic modulus in rockmass is an important factor to represent the characteristic of rock deformation and is used to estimate the displacement due to tunnel excavation. Nevertheless, the study to estimate the elastic modulus, which condisiders the rock type and joint characteristics (joint shear strength and joint inclination angle), has been done in less frequency. Accordingly, this study is aimed at providing the method to estimate the elastic modulus of rockmass in the various rock and joint conditons and the results grasped from the study. For this purpose, the 2D discrete numerical analysis will be carried out and the displacements due to tunnel excavation will be investigated with the consideration of rock and joint conditions. Then the displacement results will be used to estimate the elastic modulus of rockmass in which rock and joint conditions are considered with the utilization of the elastic theory of circular tunnel. The results of elastic modulus, which considers the conditions of various rock and joint, would be expected to have a great practical use in field.

Excitation Frequency Characteristics of a Conductive Fabric Sensor Using the Bio-impedance for Estimating Knee Joint Movements (슬관절 운동 평가를 위한 생체 임피던스 측정용 전도성 섬유 센서의 여기 주파수별 특성 평가)

  • Lee, Byung-Woo;Lee, Chung-Keun;Kim, Jin-Kwon;Jeong, Wan-Jin;Lee, Myoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1427-1433
    • /
    • 2011
  • This study describes a conductive fabric sensor and determines an optimum excitation frequency of the sensor to evaluate knee joint movements. Subjects were composed of 15 males (age: $30.7{\pm}5.3$) with no known problems with their knee joints. The upper side of subjects' lower limbs was divided into two areas and the lower side of subjects' lower limbs was divided into three areas. The sensors were attached to 1 for 3 spot from a hip joint and to 3 for 4 spot from a knee joint which are the optimum conductive fabric sensor configuration to evaluate knee joint movements. As a result, the optimum excitation frequency for evaluating knee joint movements using conductive fabric sensors was 25 kHz. Average and standard deviation of bio-impedance changes from 15 subjects were $92.1{\pm}137.2{\Omega}$ at 25 kHz. The difference of bio-impedance changes between 25 kHz and 50 kHz was statistically significant (p<0.05) and the difference of bio-impedance changes between 25 kHz and 100 kHz was also statistically significant (p<0.001). These results showed that conductive fabric sensors are more sensitive to measure bio-impedance for evaluating knee joint movements as an excitation frequency decreases.

The Structural Characteristics of the Ankle Joint Complex and Declination of the Subtalar Joint Rotation Axis between Chronic Ankle Instability (CAI) Patients and Healthy Control (만성 발목 불안정성(CAI) 환자와 건강 대조군 간의 발목 관절 복합체 구조적 특징과 목말밑 관절 회전 축 기울기)

  • Kim, Chang Young;Ryu, Ji Hye;Kang, Tae Kyu;Kim, Byong Hun;Lee, Sung Cheol;Lee, Sae Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.61-70
    • /
    • 2019
  • Objective: This study aimed to investigate the characteristics of the declination of the subtalar joint rotation axis and the structural features of the ankle joint complex such as rear-foot angle alignment and ligament laxity test between chronic ankle instability (CAI) patients and healthy control. Method: A total of 76 subjects and CAI group (N=38, age: $23.11{\pm}7.63yrs$, height: $165.67{\pm}9.54cm$, weight: $60.13{\pm}11.71kg$) and healthy control (N=38, age: $23.55{\pm}7.03yrs$, height: $167.92{\pm}9.22cm$, weight: $64.58{\pm}13.40kg$) participated in this study. Results: The declination of the subtalar joint rotation axis of the CAI group was statistically different from healthy control in both sagittal slope and transverse slope. The rear-foot angle of CAI group was different from a healthy control. Compared to healthy control, they had the structure of rear-foot varus that could have a high occurrence rate of ankle varus sprain. CAI group had loose ATFL and CFL compared to the healthy control. Conclusion: The results of this study showed that the deviation of the subtalar joint rotation axis and the structural features of the ankle joint complex were different between the CAI group and the healthy control and this difference is a meaningful factor in the occurrence of lateral ankle sprains.

An experimental study on triaxial failure mechanical behavior of jointed specimens with different JRC

  • Tian, Wen-Ling;Yang, Sheng-Qi;Dong, Jin-Peng;Cheng, Jian-Long;Lu, Jia-wei
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.181-195
    • /
    • 2022
  • Roughness and joint inclination angle are the important factors that affect the strength and deformation characteristics of jointed rock mass. In this paper, 3D printer has been employed to make molds firstly, and casting the jointed specimens with different joint roughness coefficient (JRC), and different joint inclination angle (α). Conventional triaxial compression tests were carried out on the jointed specimens, and the influence of JRC on the strength and deformation parameters was analyzed. At the same time, acoustic emission (AE) testing system has been adopted to reveal the AE characteristic of the jointed specimens in the process of triaxial compression. Finally, the morphological of the joint surface was observed by digital three-dimensional video microscopy system, and the relationship between the peak strength and JRC under different confining pressures has been discussed. The results indicate that the existence of joint results in a significant reduction in the strength of the joint specimen, JRC also has great influence on the morphology, quantity and spatial distribution characteristics of cracks. With the increase of JRC, the triaxial compressive strength increase, and the specimen will change from brittle failure to ductile failure.

Influence of Temporo-mandibular Joint Training Using Physical Therapy on the Vowel Acoustic Characteristics (TM Joint의 물리치료를 통한 훈련이 모음의 음향학적 특성에 미치는 영향)

  • Min, Dong-Gi;Lee, Jae-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2203-2208
    • /
    • 2011
  • This study was to examine the change of vowel acoustic characteristics of the temporomandibular joint disorder patients by maintaining normal vocalization pattern of the temporomandibular joint through increasing the range of motion, that was, the oral cavity sonorant cavity of the temporomandibular joint, related to vowel articulation through temporomandibular training using the physical therapy. The subjects of this study were 3 male adults in 20-30s that were diagnosed with temporomandibular joint disorder. As a result of conducting temporomandibular training program using the physical therapy, the $1^{st}$ Formant Frequency(F1), $2^{nd}$ Formant Frequency(F2), and Fundamental Frequency(F0) of the temporomandibular joint disorder patients were increased compared to before and this showed the change of the $1^{st}$ Formant Frequency(F1) related to the open mouth grade of a vowel, as well as the $2^{nd}$ Formant Frequency(F2), and Fundamental Frequency(F0) related to the front-back of a vowel which shows the relationship between the temporomandibular joint, vowels and voice calculation.

A Study on Applicability of Pre-splitting Blasting Method According to Joint Frequency Characteristics in Rock Slope (암반사면의 절리빈도 특성에 따른 프리스플리팅 발파공법의 적용성 연구)

  • Kim, Shin;Lee, Seung-Joong;Choi, Sung-O.
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.1-16
    • /
    • 2010
  • This study focuses on the phenomenon that the blast damaged zone developed on rock slope surfaces can be affected by joint characteristics rather than by explosive power when the pre-splitting is applied to excavate a jointed rock slope. The characteristics of rock joints on a slope were investigated and categorized them into 4 cases. Also an image processing system has been used for comparing the distribution pattern of rock blocks. From this investigation, it was found that the rock blocks bigger than 2,000 mm occupied 42% in the case of single joint set and it showed the well efficiency of pre-splitting blast. In cases of 2~3 parallel joint sets and 2~3 intersecting joint sets are developed on rock surfaces, the rock blocks in the range of 1,000~2,000 mm occupied 43.6% and 35.8%, respectively, and it showed that the efficiency of pre-splitting was decreased. When more than 3 joint sets are randomly developed, however, the rock blocks in the range of 250~500 mm occupied 35% and there was no block bigger than 1,000 mm. This denotes that the blasting with pre-splitting was not effective. The numerical analysis using PFC2D showed that the blast damaged zone in a rock mass could be directly influenced by the pre-splitting. It is, therefore, required to investigate the discontinuity pattern on rock surfaces in advance, when the pre-splitting method is applied to excavate jointed rock slopes and to apply a flexible blating design with a consideration of the joint characteristics.

Characteristics of Friction Stir Lap Welded A5052 with Probe Length (프루브 길이에 따른 A5052 겹치기 마찰교반접합 특성)

  • Ko, Young-Bong;Kang, Chae-Won;Choi, Jun-Woong;Park, Kyeung-Chae
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.6
    • /
    • pp.294-300
    • /
    • 2009
  • The Friction Stir Welding (FSW) has mainly been used for making butt joints in Al alloys. The development of Friction Stir Lap Welding (FSLW) would expand the number of applications. In this study, for effective application on thin aluminum alloy lap joint, non-heat treatment A5052 alloys were joined by FSLW with the length of probe 2.3 mm and 3.0 mm. Investigating the characteristics of joint area showed the results were as below ; When the length of probe was 2.3 mm, good joint area was formed at all welding condition except for 600 rpm-700 mm/min. In the case of 3.0 mm probe length, there was formed good joint area without defects at 1500 rpm-100 mm/min. The width of joint area, position and size of defects were very important factors for FSLW, due to heat input and stirring intensity.