• Title/Summary/Keyword: joint bilateral up-sampling

Search Result 3, Processing Time 0.015 seconds

Depth Up-Sampling via Pixel-Classifying and Joint Bilateral Filtering

  • Ren, Yannan;Liu, Ju;Yuan, Hui;Xiao, Yifan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3217-3238
    • /
    • 2018
  • In this paper, a depth image up-sampling method is put forward by using pixel classifying and jointed bilateral filtering. By analyzing the edge maps originated from the high-resolution color image and low-resolution depth map respectively, pixels in up-sampled depth maps can be classified into four categories: edge points, edge-neighbor points, texture points and smooth points. First, joint bilateral up-sampling (JBU) method is used to generate an initial up-sampling depth image. Then, for each pixel category, different refinement methods are employed to modify the initial up-sampling depth image. Experimental results show that the proposed algorithm can reduce the blurring artifact with lower bad pixel rate (BPR).

Up-Sampling Method of Depth Map Using Weighted Joint Bilateral Filter (가중치 결합 양방향 필터를 이용한 깊이 지도의 업샘플링 방법)

  • Oh, Dong-ryul;Oh, Byung Tae;Shin, Jitae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.1175-1184
    • /
    • 2015
  • A depth map is an image which contains 3D distance information. Generally, it is difficult to acquire a high resolution (HD), noise-removed, good quality depth map directly from the camera. Therefore, many researches have been focused on acquisition of the high resolution and the good quality depth map by up-sampling and pre/post image processing of the low resolution depth map. However, many researches are lack of effective up-sampling for the edge region which has huge impact on image perceptual-quality. In this paper, we propose an up-sampling method, based on joint bilateral filter, which improves up-sampling of the edge region and visual quality of synthetic images by adopting different weights for the edge parts that is sensitive to human perception characteristics. The proposed method has gains in terms of PSNR and subjective video quality compared to previous researches.

Depth Upsampling Method Using Total Generalized Variation (일반적 총변이를 이용한 깊이맵 업샘플링 방법)

  • Hong, Su-Min;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.21 no.6
    • /
    • pp.957-964
    • /
    • 2016
  • Acquisition of reliable depth maps is a critical requirement in many applications such as 3D videos and free-viewpoint TV. Depth information can be obtained from the object directly using physical sensors, such as infrared ray (IR) sensors. Recently, Time-of-Flight (ToF) range camera including KINECT depth camera became popular alternatives for dense depth sensing. Although ToF cameras can capture depth information for object in real time, but are noisy and subject to low resolutions. Recently, filter-based depth up-sampling algorithms such as joint bilateral upsampling (JBU) and noise-aware filter for depth up-sampling (NAFDU) have been proposed to get high quality depth information. However, these methods often lead to texture copying in the upsampled depth map. To overcome this limitation, we formulate a convex optimization problem using higher order regularization for depth map upsampling. We decrease the texture copying problem of the upsampled depth map by using edge weighting term that chosen by the edge information. Experimental results have shown that our scheme produced more reliable depth maps compared with previous methods.