• 제목/요약/키워드: joint bilateral up-sampling

검색결과 3건 처리시간 0.016초

Depth Up-Sampling via Pixel-Classifying and Joint Bilateral Filtering

  • Ren, Yannan;Liu, Ju;Yuan, Hui;Xiao, Yifan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권7호
    • /
    • pp.3217-3238
    • /
    • 2018
  • In this paper, a depth image up-sampling method is put forward by using pixel classifying and jointed bilateral filtering. By analyzing the edge maps originated from the high-resolution color image and low-resolution depth map respectively, pixels in up-sampled depth maps can be classified into four categories: edge points, edge-neighbor points, texture points and smooth points. First, joint bilateral up-sampling (JBU) method is used to generate an initial up-sampling depth image. Then, for each pixel category, different refinement methods are employed to modify the initial up-sampling depth image. Experimental results show that the proposed algorithm can reduce the blurring artifact with lower bad pixel rate (BPR).

가중치 결합 양방향 필터를 이용한 깊이 지도의 업샘플링 방법 (Up-Sampling Method of Depth Map Using Weighted Joint Bilateral Filter)

  • 오동률;오병태;신지태
    • 한국통신학회논문지
    • /
    • 제40권6호
    • /
    • pp.1175-1184
    • /
    • 2015
  • 3D 영상의 획득을 위해 이용하는 깊이 지도는 영상의 깊이 정보를 가지고 있다. 그러나 일반적으로 고해상도이며 잡음이 제거된 고화질의 깊이 지도를 카메라로부터 직접 획득하는 것은 어렵다. 그래서 저해상도의 깊이 지도를 획득하고 업샘플링 및 전/후 영상처리를 통해 높은 품질의 고해상도 깊이 지도를 획득하는 기법들이 연구되고 있다. 하지만 기존의 연구는 영상의 질에 큰 변수로 작용하는 에지 부분의 효과적 업샘플링이 미흡하다. 그래서 본 논문은 에지 부분을 차별적으로 고려하는 인지적인 특성을 반영한 영상품질향상 연구에 초점을 맞춰 결합 양방향 필터의 가중치를 적응적으로 조절함으로써 깊이 지도와 합성 영상을 개선한 고해상도의 깊이 지도를 얻는 업샘플링 방법을 제안하였다. 제안 방식을 기존의 방식과 비교하였을 때 PSNR 측면과 주관적 품질에서 이득이 있음을 보였다.

일반적 총변이를 이용한 깊이맵 업샘플링 방법 (Depth Upsampling Method Using Total Generalized Variation)

  • 홍수민;호요성
    • 방송공학회논문지
    • /
    • 제21권6호
    • /
    • pp.957-964
    • /
    • 2016
  • 요즘 들어, 3차원 콘텐츠의 수요는 지속적으로 증가하고 있다. 3차원 콘텐츠의 품질은 해당 장면의 깊이 정보에 큰 영향을 받기 때문에 정확한 깊이 정보를 얻는 것이 매우 중요하다. 카메라와 객체 사이의 깊이 정보는 적외선 센서를 이용한 계산을 통해 직접 얻을 수 있다. 최근 들어, KINECT 카메라와 같이 카메라와 물체 사이의 거리를 적외선이나 광신호를 이용하여 직접 측정하는 Time-of-flight (ToF) 기술을 사용하는 깊이 측정 방법이 널리 사용되고 있다. 이러한 방법은 카메라와 객체 사이의 깊이 정보를 실시간으로 획득할 수 있다는 장점을 갖지만, 획득된 깊이맵에 잡음이 발생하고, 깊이맵의 해상도가 낮다는 단점을 갖는다. 최근 들어, 이런 문제를 해결하기 위해서 양방향 결합 업샘플링 방법 (JBU) 이나 잡음 제거 업샘플링 방법 (NAFDU) 과 같은 필터 기반의 방법이 제안되었다. 그러나 이러한 필터 기반의 업샘플링 방법은 업샘플링된 깊이맵에 색상영상의 질감이 복사되는 문제가 발생한다. 이 논문에서는 이러한 문제점을 해결하기 위해 고차 정규화항을 이용하여 에너지 함수를 만들고, 이를 최적화하여 깊이맵을 업샘플링 한다. 또한, 색상과 깊이맵의 경계 정보를 고려한 경계 가중치항을 추가하여 질감 복사 문제를 해결한다. 실험 결과, 제안하는 깊이맵 업샘플링 방법이 기존의 방법에 비해 깊이 정보의 품질은 유지하면서, 질감 복사 문제를 효과적으로 해결할 수 있음을 확인했다.