• Title/Summary/Keyword: jets

Search Result 710, Processing Time 0.025 seconds

Impingement Heat Transfer Within a Row of Submerged Circular Water Jets (1열 원형 서브머지드 충돌수분류군에 의한 열전달의 실험적 연구)

  • Ohm, Ki-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.538-544
    • /
    • 2010
  • An experimental investigation is presented to study the effect nozzle spacing, jet to plate spacing and Reynolds number on the local heat transfer to normally upward impinging submerged circular water jets on a flat heated surface. Nozzle arrays are a single jet(nozzle dia. = 8 mm), a row of 3 jets(nozzle dia. = 4.6 mm, nozzle spacing = 37.5 mm) and a row of 5 jets(nozzle dia. = 3.6 mm, nozzle spacing = 25 mm), and jet to plate spacing ranging from 16∼80 mm(H/D = 2∼10) is tested. Reynolds number based on single jet exit condition is varied 30000∼70000($V_o$ = 3∼7 m/s). Except for the condition of H/D = 10, the average Nusselt number of multi-jet is higher than that of single jet. For H/D = 2, average Nusselt number is increased by 50.3∼82.5% for a row of 3 jets and by 52.9∼65.2% on a row of 5 jets when compared to the average Nusselt number on the single jet.

Breakup Process and Wave Development Characteristics of Gel Propellant Simulants at Various Gelling Agent Contents (젤 모사 추진제의 점도 변화에 따른 분무 분열 및 파장 변화 특성)

  • Hwang, Tae-Jin;Lee, In-Chul;Kim, Jung-Hun;Kim, Do-Hun;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.140-145
    • /
    • 2011
  • Gelled propellants are non-Newtonian fluids in which the viscosity is a function of the shear rate, and they have a high dynamic shear viscosity which depends on the amount of gelling agent contents. The present study has focused on the breakup process, wave development of ligament and liquid sheets formed by impinging jets with various gelling agent contents. The breakup process of like-on-like doublet impinging jets are experimentally characterized using non-Newtonian liquids. The spray shape with elliptical pattern is distributed in a perpendicular direction to the momentum vectors of the jets. Gelled propellant simulants with high viscosity jets are more stable and produce less pronounced surface waves than low viscosity jets. Gelled propellant simulants from like-on-like doublet impinging jets have the spray shape of closed rim patterns at low pressure. As the injection pressure increased, rimless patterns which were composed of ligament sheets and small droplets emerged due to the effect of the aerodynamic action.

A Study on Fluid Flow and Heat Transfer of a Corrugated Structure for Crossflow Reduction of Impingement Jet (충돌제트에서의 횡방향 유동 감소를 위한 파형 구조의 유동 및 열전달에 관한 연구)

  • Hwang, Byeong Jo;Kim, Seon Ho;Joo, Won Gu;Cho, Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.5
    • /
    • pp.329-339
    • /
    • 2017
  • Impingement jets have been applied in a wide variety of fields as they provide significantly high heat transfer on the impingement-jet stagnation zone. However, the crossflow in an impingement chamber developed by spent wall jets can disrupt and deflect the downstream jets in the array, leading to a decrease in the cooling performance of an array of impingement jets. A numerical analysis is made of the fluid flow and heat transfer characteristics in a corrugated structure that traps the spent air in the corrugations between impingement jets and reduces crossflow effects on downstream jets. All computations are performed by considering a three-dimensional, steady, and incompressible flow by using the ANSYS-CFX 15.0 code. The effects of the configuration parameters of the corrugated structure on crossflow reduction of the array of impingement jets are presented and discussed.

Spray Characteristics of Supersonic Liquid Jet by a Nozzle Geometry of Miniature High-Pressure Injection System (축소형 초고압 분사 시스템의 노즐 형상에 따른 초음속 액체 제트 분무 특성에 관한 연구)

  • Shin, Jeung-Hwan;Lee, In-Chul;Kim, Heuy-Dong;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.177-180
    • /
    • 2010
  • Two-stage light gas gun, sorted with Ballistic Range System, is used to research spray characteristics of supersonic liquid jets. When high pressure tube was pressurized to the 135 bar, diaphragm films which composed with OHP film are ruptured. Expansion gases accelerate a projectile approximately 250 m/s at the exit of pump tube. And accelerated projectile collides with liquid storage part and liquid jets were injected into supersonic conditions. Supersonic liquid jets show the multiple jets and generate shockwave at the forward region of jets. Supersonic liquid jets of speed and shockwave angle have different value at each case. Supersonic liquid jets with minimum velocities are injected with M=1.53 at the geometry condition of L/d=23.8.

  • PDF

3D SIMULATIONS OF RADIO GALAXY EVOLUTION IN CLUSTER MEDIA

  • O'NEILL SEAN M.;SHEARER PAUL;TREGILLIS IAN L.;JONES THOMAS W.;RYU DONGSU
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.605-609
    • /
    • 2004
  • We present a set of high-resolution 3D MHD simulations exploring the evolution of light, supersonic jets in cluster environments. We model sets of high- and low-Mach jets entering both uniform surroundings and King-type atmospheres and propagating distances more than 100 times the initial jet radius. Through complimentary analyses of synthetic observations and energy flow, we explore the detailed interactions between these jets and their environments. We find that jet cocoon morphology is strongly influenced by the structure of the ambient medium. Jets moving into uniform atmospheres have more pronounced backflow than their non-uniform counterparts, and this difference is clearly reflected by morphological differences in the synthetic observations. Additionally, synthetic observations illustrate differences in the appearances of terminal hotspots and the x-ray and radio correlations between the high- and low-Mach runs. Exploration of energy flow in these systems illustrates the general conversion of kinetic to thermal and magnetic energy in all of our simulations. Specifically, we examine conversion of energy type and the spatial transport of energy to the ambient medium. Determination of the evolution of the energy distribution in these objects will enhance our understanding of the role of AGN feedback in cluster environments.

The Flow Characteristics with Variation of Nozzle-to-nozzle Angles on Unventilated Dual Jests (이중제트에서 노즐과 노즐사이의 각도 변화에 따른 유동 특성)

  • Kim, Dong-Keon;Kim, Moon-Kyoung;Yoon, Soon-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1231-1239
    • /
    • 2008
  • The characteristics of flow on unventilated dual jets was experimentally investigated. The two nozzles each with an aspect ratio of 20 were separated by 6 nozzle widths. Reynolds number based on nozzle width was set to 5,000 by nozzle exit velocity. All measurements were made over a range of nozzle-to-nozzle angles from $0^{\circ}$ to $25^{\circ}$. The particle image velocimetry and pressure transducer were employed to measure turbulent velocity components and mean static pressure, respectively. It was shown that a recirculation zone with sub-atmospheric static pressure was bounded by the inner shear layers of the individual jets and the nozzles plated. As nozzle-to-nozzle inclined angles were decreased, it was found that the spanwise turbulent intensity is greater than the streamwise turbulent intensity in the merging region. In the combined region, the velocity of dual jets agree well with that of single jet, but the turbulence intensity of dual jets not agree with that of single jet.

Change of Intrinsic Brightness Temperatures of Compact Radio Jets

  • Lee, Sang-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.57.1-57.1
    • /
    • 2014
  • We present results of our investigation of intrinsic brightness temperatures of compact radio jets at radio frequencies. The intrinsic brightness temperatures of about 100 compact radio jets at 2, 5, 8, 15, and 86 GHz are estimated based on large VLBI surveys conducted in 2001-2003 (or in 1996 for the 5 GHz sample). The multi-freqeuncy intrinsic brightness temperatures of the sample of the jets are determined with a statistical method relating the observed brightness temperatures with the maximal apparent jet speed, assuming one representative intrinsic brightness temperature for the sample at each observing frequency. With investigating the observed brightness temperatures at 15 GHz in multiple epochs, we found that the determination of the intrinsc brightness temperature for our sample is affected by variability of individual jets in flux density at the time scales of a few years. This implies an importance of contemporaneity of the multi-frequency VLBI observations for the statistical method. Since our analysis is based on the VLBI observations conducted in 2001-2003, the results are less affected by the flux density variability. We found that the intrinsic brightness temperature $T_0$ increases as $T_0{\propto}{\nu}^{\epsilon}$ with ${\epsilon}{\approx}0.7$ below a critical frequency ${\nu}_c{\approx}10GHz$ where energy losses begin to dominate the emission, and above the critical frequency, $T_0$ decreases with ${\epsilon}{\approx}-1.2$ supporting for the decelerating jet model.

  • PDF

A Fundamental Study of Supersonic Coaxial Jets for Gas Cutting (가스절단용 초음속 제트유동에 관한 기초적 연구)

  • Lee, Gwon-Hui;Gu, Byeong-Su;Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.837-844
    • /
    • 2001
  • Jet cutting technology currently makes use of a generic supersonic gas jet to improve the cutting speed and performance. In order to get a better understanding of the flow characteristics involved in the supersonic jet cutting technology, the axisymmetric Navier-Stokes equations have been solved using a fully implicit finite volume method. Computations have been conducted to investigate some major characteristics of supersonic coaxial turbulent jets. An assistant gas jet has been imposed on the primary gas jet to simulate realistic jet cutting circumstance. The pressure and the temperature ratios of the primary and assistant gas jets are altered to investigate the major characteristics of the coaxial jets. The total pressure and Mach number distributions, shock wave systems, and the jet core length which characterize the coaxial jet flows are strongly affected by the pressure ratio, but not significantly dependent on the total temperature ratio. The assistant gas jet greatly affects the basic flow characteristics of the shock system and the core length of under and over-expanded jets.

An Experimental Study on Supersonic Jet Issuing from Gas Atomizing Nozzle (I) (가스 미립화용 노즐로부터 방출되는 초음속 분류에 관한 실험적 연구)

  • Kim, Hui-Dong;Lee, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.697-709
    • /
    • 1996
  • Supersonic axisymmetric jets issuing from various kinds of nozzles with a throat diameter of a few millimeters were experimentally investigated. The exit Mach number and Reynolds number based on the throat diameter of nozzle were in the range of 1.0 ~ 5.9 and 8.4$\times$ $10^4$ ~ 2.9$\times$$10^6$, respectively. The nozzle pressure ratio was varied from 5 to 85. Present paper aims to offer fundamental information of the supersonic free-jets, with an emphasis to give data with which the shape of the free-jets can be depicted under a specified condition. Experimental data are summarized to enable an estimation of the shape of the supersonic free-jets. The result shows that the shape of free-jets is dependent on only the nozzle pressure ratio.