• Title/Summary/Keyword: jets

Search Result 710, Processing Time 0.025 seconds

Lifted Flames in Laminar Coflow Jets of Propane (층류 동축류 제트에서의 프로판 부상 화염에 관한 실험적 연구)

  • Lee, J.;Won, S.H.;Jin, S.H.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.61-67
    • /
    • 2002
  • Characteristics of lifted flames in axisymmetric laminar coflow jets have been investigated experimentally. Approximate equations for velocity and concentration with virtual origins have been proposed to analyze the behavior of flames in coflow jets. Measuring Rayleigh intensity to investigate the concentration field. proposed approximate equations were confirmed. By using the results of OH PLIF, direct photography and Rayleigh scattering measurement, it is shown that the locations of maximum intensity in direct photography coincide with the tribrachial points in axisymmetric jets and the tribrachial points travel on the stoichiometric contour. For coflow jets, the experimental results of liftoff height have been successfully correlated with nozzle exit velocity using predicted behavior from proposed approximated equations. These results substantiate the stabilization mechanism in coflow jet is based on the balance between flame propagation speed and axial flow velocity, same as for the free jets.

  • PDF

Flow Characteristics of Parallel Plane Jets (병렬평면제트의 유동특성)

  • Kim Dong-Keon;Yoon Soon-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.823-826
    • /
    • 2002
  • Experiments were conducted to show the characteristics of the flow on unventilated parallel plane jets. Measurements of mean velocity components and turbulent intensities were carried out with a particle image velocimetry. The measurements range of these experiments was Reynolds number of 5300 based on the nozzle width and the cases of nozzle-to-nozzle distance were 4, 6, 8, and 10 times the width of the nozzle. Results show that a recirculation zone with a sub-atmospheric static pressure was bounded by the inner shear layers of the individual jets and the nozzles plate. The positions, where maximum value of mean turbulent intensities and mean turbulent kinetic energy show, were at the same position with the merging point. The spread of jets in the merging region increases more rapidly than that of jets in the converging and the combined region. As nozzle-to-nozzle distances were increased, it was shown that merging and combined lengths were shorter.

  • PDF

Flow analysis of Buoyant Jets into Storage Tank through Variable Nozzles (각종 Nozzle을 통하여 저장조내로 유입되는 BUOYANT JETS의 유동해석)

  • Pak, Ee-Tong;Cho, Woon
    • Solar Energy
    • /
    • v.9 no.2
    • /
    • pp.42-50
    • /
    • 1989
  • The Buoyant Jets were analysed experimentally changing flow rate (0.0291/s, 0.0371/s, 0.0451/s), ratio of nozzle tip area to throat area (aspect ratio ${\beta}$=0.4, 1.0, 1.9), and also the temperature difference (${\Delta}T=Ti-T{\infty}$) between the temperature of the inflow water into the storage tank ($1m{\times}1m{\times}3m$) and the mean temperature of the water in the storage tank were changed as $25^{\circ}C,\;35^{\circ}C$ and $45^{\circ}C$. The more aspect ratio decreased, the more the trajectories of Buoyant Jets center-line were decreased and not the more the trajectories of Buoyant Jets centerline were influenced by the increment of the difference of the temperature. The more aspect ratio decreased, the more the half widths and dilution ratio of Buoyant Jets were increased and not the more the half widths and dilution ratio of Buoyant Jets were influenced by the increment of the difference of the temperature. Fr number is the factor that can predict the flow pattern over the whole flow field. And yet for the consideration the near field of Buoyant Jets flow pattern is dominated by magnitude of momentum and buoyancy force.

  • PDF

Numerical Study of AGN Jet Propagation with Two Dimensional Relativistic Hydrodynamic Code

  • MIZUTA AKIRA;YAMADA SHOICHI;TAKABE HIDEAKI
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.329-331
    • /
    • 2001
  • We investigate the morphology of Active Galactic Nuclei(AGN) jets. AGN jets propagate over kpc $\~$ Mpc and their beam velocities are close to the speed of light. The reason why many jets propagate over so long a distance and sustain a very collimated structure is not well understood. It is argued that some dimensionless parameters, the density and the pressure ratio of the jet beam and the ambient gas, the Mach number of the beam, and relative speed of the beam compared to the speed of light, are very useful to understand the morphology of jets namely, bow shocks, cocoons, nodes etc. The role of each parameters has been studied by numerical simulations. But more research is necessary to understand it systematically. We have developed 2D relativistic hydrodynamic code to analyze relativistic jets. We pay attention to the propagation velocity which is derived from 1D momentum balance in the frame of the working surface. We show some of our models and discuss the dependence of the morphology of jets on the parameter.

  • PDF

INTRINSIC BRIGHTNESS TEMPERATURES OF COMPACT RADIO JETS AS A FUNCTION OF FREQUENCY

  • Lee, Sang-Sung
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.303-309
    • /
    • 2014
  • We present results of our investigation of the radio intrinsic brightness temperatures of compact radio jets. The intrinsic brightness temperatures of about 100 compact radio jets at 2, 5, 8, 15, and 86 GHz are estimated based on large VLBI surveys conducted in 2001-2003 (or in 1996 for the 5 GHz sample). The multi-frequency intrinsic brightness temperatures of the sample of jets are determined by a statistical method relating the observed brightness temperatures with the maximal apparent jet speeds, assuming one representative intrinsic brightness temperature for a sample of jets at each observing frequency. By investigating the observed brightness temperatures at 15 GHz in multiple epochs, we find that the determination of the intrinsic brightness temperature for our sample is affected by the flux density variability of individual jets at time scales of a few years. This implies that it is important to use contemporaneous VLBI observations for the multi-frequency analysis of intrinsic brightness temperatures. Since our analysis is based on the VLBI observations conducted in 2001-2003, the results are not strongly affected by the flux density variability. We find that the intrinsic brightness temperature $T_0$ increases as $T_0{\propto}{\nu}^{\xi}_{obs}$ with ${\xi}=0.7$ below a critical frequency ${\nu}_c{\approx}9GHz$ where the energy loss begins to dominate the emission. Above ${\nu}_c$, $T_0$ decreases with ${\xi}=-1.2$, supporting the decelerating jet model or particle cascade model. We also find that the peak value of $T_0{\approx}3.4{\times}10^{10}$ K is close to the equipartition temperature, implying that the VLBI cores observable at 2-86 GHz may be representing jet regions where the magnetic field energy dominates the total energy in jets.

Physical Characteristics of Two Types of EUV Coronal Jets Observed by SDO/AIA

  • Kim, Il-Hoon;Moon, Yong-Jae;Lee, Jin-Yi;Lee, Kyoung-Sun;Sung, Suk-Kyung;Kim, Kap-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.63.2-63.2
    • /
    • 2013
  • We have investigated the EUV coronal jets observed by Solar Dynamic Observatory (SDO) / Atmospheric Imaging Assembly (AIA). From the Heliophysics Events Knowledgebase (HEK), we consider all recorded 40 EUV jets in $171{\AA}$ from May 2010 to July 2011 and use 19 jets whose location can be clearly identified, excluding limb events because of the ambiguity of their positions. According to the positions of their roots, these coronal jets are classified into two types: bright point jet (BPJ, 9 jets) and active region boundary jet (ABJ, 10 jets). BPJs are located at the top of bright points and ABJs at the boundaries of active regions. There are significant differences in speed and size between two types. Here the speed and size of a jet are assumed to be its maximum values in the case that the jet has several ejections. The average speed and size of 9 BPJs are about 110 km/s and 69,000km, respectively. The average speed and size of 10 ABJs are about 660 km/s and 194,000 km, respectively. The speed distribution of ABJs has two peaks at about 270 km/s and 1700 km/s. It is very interesting to note that three ABJs have very high speeds larger than 1600 km/s and they are all composed of a group of recurrent jets with low and high speed at the same location. In addition, we are investigating these events in other wavelengths and compare their characteristics.

  • PDF

Impingement heat transfer within 1 row of circular water jets: Part 2-Effects of nozzle to heated surface distance (1열 원형 충돌수분류군에 의한 열전달의 실험적 연구 (제2보, 노즐-전열면간 거리의 영향))

  • 엄기찬;이종수;김상필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.59-66
    • /
    • 2000
  • In a previous paper, we have examined the effects of nozzle configuration and jet to jet spacing on the heat transfer of 1 row of circular water jets. In this paper, experiments have been conducted to obtain the effects of nozzle to target plate distances on the heat transfer of 1 row of 3 jets and 1 row of 5 jets. The nozzle configurations are Cone type, Reverse cone type and Vertical circular type. Nozzle to target plate distance H was varied from 16 mm(H/D=2) to 80mm(H/D=10). For fixed value of mass flow rate and nozzle to target plate distance, larger values of average Nusselt number were obtained for the smaller jet to jet spacing. For the array of water jets, the average heat transfer was decreased slightly with increasing nozzle to target plate distance at low jet velocity of $\textrm{V}_{o}$=3 m/s. However, except for $\textrm{V}_{o}$=8 m/s of 1 row of 5 jets, it was increased with increasing nozzle to target plate distance at high jet velocity of $\textrm{V}_{o}$$\geq$6m/s. We proposed to apply the nozzle configuration of maximum average heat transfer to each nozzle to target plate distance for 1 row of 3 jets, and, it was Reverse cone type nozzle for 1 row of 5 jets(Reynolds number$\geq$36000).

  • PDF

Ink Jets as Display Manufacturing Tools

  • Schoeppler, Martin.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1719-1721
    • /
    • 2007
  • Major display equipment suppliers have introduced equipment using ink jets for manufacturing steps such as printing the polyimide alignment layer and printing color filters. This paper will discuss the status of ink jets as precision deposition tools and the new technology being introduced for ink jet manufacturing.

  • PDF

A Study on the Velocity Characteristics of the Spray Formed by Two Impinging Jets (충돌 제트로 형성되는 분무의 속도 특성에 대한 연구)

  • Choo, Yeon-Jun;Seo, Kwi-Hyun;Kang, Bo-Seon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.87-93
    • /
    • 2001
  • In this study, the velocity characteristics of liquid elements formed by two impinging jets is analysed using double pulse image capturing technique. For the droplets formed by low speed impinging jets, the droplet velocities are higher with smaller azimuthal and impingement angle. The maximum droplet velocities are about 25 % lower than jet velocity. With an increase of azimuthal angle, the shedding angles increases but remains lower than azimuthal angle. The velocities of ligaments formed by high speed impinging jets gradually decreases with an increase of azimuthal angle. The maximum ligament velocities are about 40 % lower than jet velocity. Higher impingement angles produce lower ligament velocities. The shedding angles of ligament almost increases with the same value of azimuthal angle, which implies that the moving direction of ligaments is radial from the origin as the impingement point.

  • PDF