• Title/Summary/Keyword: jet injection

Search Result 344, Processing Time 0.022 seconds

Performance Evaluation of Wall Blower Nozzle using Erosion Analysis (침식 해석을 이용한 월 블로워 노즐의 성능 예측)

  • Paek, Jae Ho;Jang, llkwang;Jang, Yong Hoon
    • Tribology and Lubricants
    • /
    • v.34 no.5
    • /
    • pp.175-182
    • /
    • 2018
  • Accumulation of coal ash at the boiler wall reduces combustion and fuel efficiency. The design of a wall blower is important to effectively remove coal ash. We present numerical results for the removal of coal ash from boiler walls of domestic coal-fired power plants, associated with the computational fluid dynamics for the flow from spray nozzle to boiler wall. The numerical model simulates an erosion process in which the multiphase fluid comprising saturated vapor and fluid water is sprayed from the nozzle, and the water particles impact the boiler wall. We adopt the Finnie erosion model for water particles. We obtain the erosion rate density as a function of nozzle angle and its injection angle. As excessive coal ash removal usually induces damage to the boiler wall, the removal operation typically focuses on a large area with uniform depth rather than the maximum removal of coal ash at a specific location. In order to estimate the removal performance of the wall blower nozzle considering several functionality and reliability factors, we evaluate the optimal injection and nozzle angles with respect to the biggest cumulative and highest erosion rates, as well as the widest range and lowest standard deviation of the erosion rate distribution.

Experimental Study on Fuel/Air Mixing using Inclined Injection in Supersonic Flow (경사 분사에 의한 초음속 유동 연료-공기 혼합에 관한 실험적 연구)

  • Lee, Dong-Ju;Jeong, Eun-Ju;Kim, Chae-Hyoung;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.281-284
    • /
    • 2008
  • The flow of combustor in scramjet engine is supersonic speed. So residence time and mixing ratio are very important factors for efficient combustion. This study used open cavity on fuel/air mixing model and laser schlieren was carried out to investigate flow characteristics around a jet orifice and a cavity. A source of illumination has 10 ns endurance time so it can observe unsteady flow characteristics efficiently. Pressure was measured by varying momentum flux ratio. And the change of critical ignition point was observed to change of momentum flux ratio.

  • PDF

Performance Analysis of an Inert Gas Generator for Fire Extinguishing

  • Kim, Su-Yong;Arkadiy F. Slitenko
    • 연구논문집
    • /
    • s.29
    • /
    • pp.5-15
    • /
    • 1999
  • Present study deals with performance analysis of an inert gas generator (IGG) which is to be used as an effective mean to suppress the fire. The IGG uses a turbo jet cycle gas turbine engine to generate inert gas for fire extinguishing. It is generally known that a lesser degree of oxygen content in the product of combustion will increase the effectiveness of fire suppressing. An inert gas generator system with water injection will bring advantages of suffocating and cooling effects which are considered as vital factors for fire extinguishing. As the inert gas is injected to the burning site, it lowers the oxygen content of the air surrounding the flame as well as reduces the temperature around the fire as the vapour in the inert gas evaporates during the time of spreading. Some important aspects of influencing parameters, such as, air excess coefficient. $\alpha$, compressor pressure ratio, $ pi_c$, air temperature before combustion chamber, $T_2$, gas temperature after combustion chamber, $T_3$, mass flow rate of water injection, $M_w$, etc., on the performance of IGG system are investigated. Calculations of total amount of water needed to reduce the turbine exit temperature to pre-set nozzle exit temperature employing a heat exchanger were made to compare the economics of the system. A heat exchanger with two step cooling by water and steam is considered to be better than water cooling only. Computer programs were developed to perform the cycle analysis of the IGG system and heat exchanger considered in the present study.

  • PDF

Experimental & Performance Analysis of an Inert Gas Generator for Fire Suppressing (화재진압용 비활성가스제너레이터 성능해석 및 시험)

  • 김수용;코발레프스키
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.86-89
    • /
    • 2001
  • Present study deals with performance analysis and experimental investigation of an inert gas generator (IGG) which can be used as effective means to suppress fire. The IGG uses a turbo-jet engine to generate inert gas for fire extinguishing. It is generally known that a less degree of oxygen content in the product of combustion will increase the effectiveness of fire extinguishing. An inert gas generator system with water injection has advantages of suffocating and cooling effects that are very Important factors for fire extinguishing. Some aspects of influencing parameters, such as, air excess coefficient, compressor pressure ratio, air temperature before combustion chamber, gas temperature after combustion chamber, mass flow rate of water injection etc. on the performance of IGG system are investigated.

  • PDF

Unsteady Three-Dimensional Analysis of Transverse Fuel Injection into a Supersonic Crossflow using Detached Eddy Simulation Part I : Non-Reacting Flowfield (DES를 이용한 초음속 유동내 수직 연료분사 유동의 비정상 3차원 해석 Part I : 비반응 유동장)

  • Won, Su-Hee;Jeung, In-Seuck;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.863-878
    • /
    • 2009
  • Unsteady three-dimensional flowfield generated by transverse fuel injection into a supersonic mainstream is simulated with a DES turbulence model. Comparisons are made with experimental results in terms of the temporal eddy position and eddy formation frequency. The vorticity field around the jet exit is also analyzed to understand the formation mechanism of the large eddy structures. Results indicate that the DES model correctly predicts the convection characteristics of the large scale eddies. However, it is also observed that the numerical results slightly over-predict the eddy formation frequency. The large eddy structures are generated as the counter-rotating vortices are detached alternately in the upstream recirculation region.

Possible Improvement of Oocyte Supply by the use of Aged Mice and Different Gonadotrophins

  • Lee, Myungook;Ahn, Jong Il;Kwun, Hyosook;Ko, Dong Woo;Ahn, Jiyeon;Lim, Jeong Mook
    • Journal of Embryo Transfer
    • /
    • v.33 no.2
    • /
    • pp.69-73
    • /
    • 2018
  • This study was conducted to examine the influences of two human chorion gonadotrophins (hCGs) being injected into young or aged (45- to 65-week old) outbred (ICR) mice on developmental capacity of oocytes retrieved. In vitro-culture and parthenogenetic activation of oocytes retrieved were employed for the assessment. Superovulation was determined as being induced when more than 25 oocytes were retrieved. No aged mice were superovulated, while in contrast, 67-100% were superovulated in the 6- to 8-week-old (young) mice. In the aged, hCG injection yielded better retrieval (5 vs. 13 to 14.8 oocytes/mouse). Overall, no significant difference between two hCGs was detected but between the young and aged, significant differences in maturational arrest (0% vs. 39% MI arrest and 46% vs. 15% degeneration) and developmental capacity (24% vs. 46% 8-cell embryo development) were detected. In conclusion, hCG injection contributes to increasing oocyte retrieval from aged outbred mice, but the kinds of gonadotrophin influenced the efficiency of hyperstimulation induction in specific ages.

Spray Characteristics of a Modulated Liquid Jet through 2nd Pulsed Control (2차 가진 제어 변조분사 특성 및 액체제트의 분무특성)

  • Kang, Young-Su;Lee, In-Chul;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.672-675
    • /
    • 2010
  • Spray characteristics for the modulation with a pulsed spray in low-frequency region were investigted by performing with additional internal pulsed injection. The 1st perturbative flow was generated by rotating-type pulsed device and the 2nd pulse source generated by the magnetic valve was used to modulate the 1st flow. A pattern of the modulated spray was observed through FFT result and visualization. In case of modulated spray with the 2nd pulse control, the width of up and down motion of the modulated spray is smaller than that of the spray without the 2nd pulse. Also, the depth of penetration of the down stream is higher than that of spray without the 2nd pulse.

  • PDF

Comparison of Developmental Efficiency of Murine Somatic Cell Nuclear Transfer Protocol

  • Moon, Jeonghyeon;Jung, Miran;Roh, Sangho
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.81-86
    • /
    • 2017
  • The Somatic cell nuclear transfer (SCNT) method can be applied to various fields such as species conservation, regenerative medicine, farming industries and drug production. However, the efficiency using SCNT is very low for many reasons. One of the troubles of SCNT is that it is highly dependent on the researcher's competence. For that reason, four somatic cell nuclear injection methods were compared to evaluate the effect of hole-sealing process and existence of cytochalasin B (CB) on efficiency of murine SCNT protocol. As a results, the microinjection with the hole-sealing process, the oocyte plasma membrane is inhaled with injection pipette, in HCZB with CB was presented to be the most efficient for the reconstructed in SCNT process. In addition, we demonstrated that the oocytes manipulated in Hepes-CZB medium (HCZB) with CB does not affect the developmental rate and the morphology of the blastocyst during the pre-implantation stage. For this reason, we suggest the microinjection involving hole-sealing in HCZB with CB could improve SCNT process efficiency.

Performance Assessment of the Dual-Throat Nozzle Thrust Vector Control in a 3D Rectangular Nozzle (3D 직사각형 노즐에서 이중 스 로트 노즐 스러스트 벡터 제어의 성능 평가)

  • Wu, Kexin;Kim, Tae Ho;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.4
    • /
    • pp.12-24
    • /
    • 2020
  • The dual-throat nozzle is an extremely effective method in the thrust vectoring control field, utilizing another convergent section to connect with the divergent part of the conventional convergent-divergent nozzle. In the present research, the numerical simulation is conducted to investigate the effects of the injection angle on thrust vectoring performance in a 3D supersonic nozzle. Five injection angles are discussed and core performance variations are analyzed, including the deflection angle, injected mass flow ratio, system resultant thrust ratio, efficiency, Mach number contour and streamline on the symmetry plane, and Mach number contours at different slices. Meaningful conclusions are offered for fighter jet designers.

Reduction of a Numerical Grid Dependency in High-pressure Diesel Injection Simulation Using the Lagrangian-Eulerian CFD Method (Lagrangian-Eulerian 기법을 이용한 고압 디젤 분무 시뮬레이션의 수치해석격자 의존성 저감에 관한 연구)

  • Kim, Sa-Yop;Oh, Yun-Jung;Park, Sung-Wook;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • In the standard CFD code, Lagrangian-Eulerian method is very popular to simulate the liquid spray penetrating into gaseous phase. Though this method can give a simple solution and low computational cost, it have been reported that the Lagrangian spray models have numerical grid dependency, resulting in serious numerical errors. Many researches have shown the grid dependency arise from two sources. The first is due to unaccurate prediction of the droplet-gas relative velocity, and the second is that the probability of binary droplet collision is dependent on the grid resolution. In order to solve the grid dependency problem, the improved spray models are implemented in the KIVA-3V code in this study. For reducing the errors in predicting the relative velocity, the momentum gain from the gaseous phase to liquid particles were resolved according to the gas-jet theory. In addition, the advanced algorithm of the droplet collision modeling which surmounts the grid dependency problem was applied. Then, in order to validate the improved spray model, the computation is compared to the experimental results. By simultaneously regarding the momentum coupling and the droplet collision modeling, successful reduction of the numerical grid dependency could be accomplished in the simulation of the high-pressure injection diesel spray.