• Title/Summary/Keyword: jet flow

Search Result 1,677, Processing Time 0.027 seconds

Impact of the Thruster Jet Flow of Ultra-large Container Ships on the Stability of Quay Walls

  • Hwang, Taegeon;Yeom, Gyeong-Seon;Seo, Minjang;Lee, Changmin;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.403-413
    • /
    • 2021
  • As the size of ships increases, the size and output power of their thrusters also increase. When a large ship berths or unberths, the jet flow produced from its thruster has an adverse effect on the stability of quay walls. In this study, we conducted a numerical analysis to examine the impact of the thruster jet flow of a 30,000 TEU container ship, which is expected to be built in the near future, on the stability of a quay wall. In the numerical simulation, we used the fluid-structure interaction analysis technique of LS-DYNA, which is calculated by the overlapping capability using an arbitrary Lagrangian Eulerian formulation and Euler-Lagrange coupling algorithm with an explicit finite element method. As the ship approached the quay wall and the vertical position of the thruster approached the mound of the quay wall, the jet flow directly affected the foot-protection blocks and armor stones. The movement and separation of the foot-protection blocks and armor stones were confirmed in the area affected directly by the thruster jet flow of the container ship. Therefore, the thruster jet flows of ultra-large ships must be considered when planning and designing ports. In addition, the stability of existing port structures must be evaluated.

A Study about Flow Characteristics of Impinging Jet for Thermal Control (I) (전열제어를 위한 충돌제트의 유동특성에 관한 연구(I))

  • 김동균;김정환;배석태;김시범;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1330-1335
    • /
    • 2001
  • A present study is the flow characteristics of impinging jet by PIV measurement and numerical analysis. The flow characteristics of impinging jet flow are affected greatly by nozz1e inlet velocity An circular sharp edged nozzle type($45^{\circ}$ ) was used to achieve uniform mean velocity at the nozz1e inlet, and its diameter is 10 mm(d). Therefore, the flow characteristics on the impinging jet can be changed largely by the control of main flow In this parent study, we investigate the effects of inlet velocity, its variable is nozzle inlet Reynolds numbers (Re=1500, 3000, 4500, 6000 and 7500)

  • PDF

A Study on Flow Characteristics of Confined Circular Jet within Pipe (이중원관 구속제트의 유동특성에 관한 연구)

  • Seo M. S.;Choi J. W.;Lee Y. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.136-142
    • /
    • 1997
  • The present study is aimed to investigate flow characteristics of confined jet flow within circular pipe. Numerical method based upon revised SOLA scheme which secures conservation form of convective terms on irregular grids by interpolating the variables appearing in staggered meshes is adopted on cylindrical coordinate formation. Computation was carried out for two kinds of Reynolds number, $10^5\;and\;1.5{\times}10^5$ defined by diameter of outer pipe and time-mean driving jet velocity. Results show that periodic vortex shedding from the jet mixing layer is profound and related unsteady flow characteristics prevail over the entire region. Spatial distribution of pressure and kinetic energy, fluctuation of static wall pressure, together with radial velocity components are examined in terms of instantaneous and time-mean point of views.

  • PDF

A Study about Flow Characteristics of Impinging Jet for Thermal Control (전열제어를 위한 충돌제트의 유동특성에 관한 연구)

  • 김동균;김정환;배석태;김시범;이영호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.34-39
    • /
    • 2001
  • A present study is the flow characteristics of impinging jet by PIV measurement and numerical analysis. The flow characteristics of impinging jet flow are affected greatly by nozzle inlet velocity. An circular sharp edged nozzle type($45^{\circ}$) was used to achieve uniform mean velocity at the nozzle inlet, and its diameter is 10mm(d). Therefore, the flow characteristics on the impinging jet can be changed largely by the control of main flow. In this parent study, we investigate the effects of inlet velocity, its variable is nozzle inlet Reynolds numbers(Re=1500m 3000, 4500, 6000 and 7500)

  • PDF

The Review of Studies on Heat Transfer in Impinging Jet

  • Hong, Sung-Kook;Cho, Hyung-Hee
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.196-205
    • /
    • 2005
  • In this paper, recent research trend on heat transfer in impinging jet is reviewed. We focused on submerged jet that air issued into air or liquid issued into liquid. To control and enhance the heat transfer in single jet, researchers have performed a lot of experiments by considering the nozzle geometry, impinging surface and active method such as jet vibration, secondary injection and suction flow. The studies on multiple jet have been mainly focused on finding out the optimum condition and on investigating many different factors concerned with application condition (crossflow, rotation and geometry etc.) and combined techniques (rib turbulator, pin fin, dimple and effusion hole etc.). All most experiments showed the detailed heat transfer data by using liquid crystal method, infrared camera technique and naphthalene sublimation method. Many numerical calculations have been performed to investigate the flow and heat transfer characteristics in laminar jet region. Various turbulence models such as $k-\varepsilon-\bar{\nu^2}$, modified $k-\varepsilon-f_{\mu}$ were applied to the calculation for turbulent jet and the predicted results showed a good agreement with the experimental data. Although a lot of studies on impinging jet have performed consistently up to recently, further studies are still required to understand the flow and heat transfer characteristics more accurately, and to give a guideline for optimum impinging jet design in various applications.

Characteristic study of fluid flow of laminar impinging jet in an aligned magnetic field (자기장이 인가된 영역에서의 층류 충돌제트의 유동특성 변화에 대한 수치적 연구)

  • Lee, Hyun-Goo;Ha, Man-Yeong;Yoon, Hyun-Sik;Chun, Ho-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1845-1850
    • /
    • 2004
  • The laminar impinging jet flow fields were investigated with or without magnetic fields. The transient phenomenon from steady to unsteady flow was founded at specific Reynolds number ranges. In unsteady flow region, the magnetic fields make flow stable. So the characteristics of fluid flow at impingement wall are changed

  • PDF

Flow Separation Control Effects of Blowing Jet on an Airfoil (블로잉 제트에 의한 에어포일에서의 유동박리 제어효과)

  • Lee, Ki-Young;Chung, Heong-Seok;Cho, Dong-Hyun;Sohn, Myong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1059-1066
    • /
    • 2007
  • An experimental study has been conducted to investigate the flow separation control effects of a blowing jet on an elliptic airfoil at a Reynolds number of 7.84×105 based on the chord length. A blowing jet was obtained by pressing a plenum inside the airfoil and ejecting flow out of a thin jet slot that located in leading edge or trailing edge. The experimental results have shown that the blowing jet had an effect of suppressing the flow separation, resulting in the higher suction pressure distribution and higher normal force. The increase in Cn was more pronounced at higher incidence, whereas the effectiveness of the blowing jet reduced at lower incidences. The leading edge pulsating blowing with 90° was the most effective in controlling the flow separation than other types of blowing jet configuration tested in this research. Moreover, when the pulsating blowing was applied, the stall angle was postponed about 2°-3°. The continuous and pulsating blowing jet is a direct and effective flow separation control for improving the aerodynamic characteristics and performances of airfoil.

Effects of Pulsating Jet Blowing on Stall Control of Two Dimensional Elliptic Airfoil (이차원 타원형 날개꼴의 실속제어에서 간헐제트 브로잉의 효과)

  • Lee, Ki-Young;Sohn, Myong-Hwan;Jeong, Hung-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.1-8
    • /
    • 2005
  • This paper explored the effects of separation control through the use of pulsating jet blowing on a two dimensional elliptical airfoil. To develop an active control technique of flow separation, a flow control actuator utilizing continuous/pulsed jet of pressurized air was designed and installed in a wind tunnel testing model of elliptic wing. PIV measurement and flow visualization of the wing near field were conducted to access the feasibility and effectiveness of the pulsed jet blowing on controlling the stall of the elliptical wing in subsonic flow. PIV experimental results show that separation control can provide significant reduction in turbulent flow wake and separation bubbles by jet blowing. The pulsating jet blowing is more effective on the separation control than continuous one. Increased jet frequency suppressed the turbulent separated flow wake effectively at even higher AOAs.

Three Dimensional Simulation Model of Fuel Delivery Jet Pump (연료 송출용 제트펌프 3차원 전산해석 모델)

  • PARK, DAIN;YUN, JIN WON;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.3
    • /
    • pp.308-314
    • /
    • 2017
  • Jet pump in automotive fuel tank module is used to deliver fuel to fuel pump so that the pump is operated without aeration in suction side. In this study, three dimensional simulation model of jet pump is developed to understand performance variation over design parameters. Performance of jet pump is also investigated experimentally in terms of operating pressures. The experimental data is used to verify the three dimensional simulation model of jet pump. Verification results show that the three dimensional simulation model of jet pump is about 1% error with experiment. The simulations are conducted in terms of throat ratio and primary flow induction angle. As the throat ratio is increased, the flux ratio is trade-off at 3 times of throat diameter. On the other hand, as primary flow induction angle is increased, vapor pressure inside the nozzle is decreased. In summary, the results show that liquid jet pump has to be optimized over design parameters. Additionally, high velocity of induced flow is able to evolve cavitation phenomena inside the jet pump.

Numerical Analysis on the Flow Characteristics of Side Jet Thruster (Side Jet 발생기의 유동특성에 관한 해석)

  • Hong S. K.;Sung W. J.
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.27-31
    • /
    • 2001
  • For rapid and abrupt control of a missile in supersonic flight, side jet on a missile body is found to be a useful device as evidenced by recent missile development at several nations. The magnitude of the side jet and the duration of it decide the level of control of such a missile system. In this paper, the aerodynamic characteristics of the side jet device itself are examined in terms of key parameters such as the side jet nozzle geometry, the chamber pressure and temperature. Specifically attention is paid to the effect of the chamber shape between the straight nozzle and the bent nozzle by 90 degrees on the nozzle flow properties. The thrust magnitudes are compared between the two shapes. Whether the way the nozzle is bent at the joint affects the nozzle performance is also investigated. Effects of the length and the divergence angle of the nozzle on the thrust are also quantified among three different side jet nozzles.

  • PDF